AI Article Synopsis

  • The study evaluated the radiopacity of various dental luting materials, including conventional cements, resin-modified glass ionomers (RMGIs), acrylic resins, and composites.
  • The radiopacity values were measured against human enamel and dentin, with a notable range from 5.1 to 12.9 mm Al for conventional materials, while some MMA resins had values under 0.5 mm.
  • The findings highlight significant variability in radiopacity among these materials, indicating the importance of careful selection based on their properties when used in dental restorations.

Article Abstract

The purpose of the present study was to evaluate the radiopacity of currently available dental luting materials. Five conventional cements, six resin-modified glass ionomers (RMGIs), two methyl methacrylate (MMA)-based acrylic resins (eight shades), and nine composite luting materials were evaluated. Radiographs of the specimens were taken together with tooth slices and aluminum step wedges. The density of the specimens was determined with a densitometer and was expressed in terms of the equivalent thickness of aluminum per 2.0-mm unit thickness of specimen. The radiopacity values for human enamel and dentin were 4.3 and 2.3 mm Al/2.0 mm specimen, respectively. The values for materials ranged from 5.1 to 12.9 for conventional luting materials, from 3.4 to 6.3 for RMGIs, from less than 0.5 to 7.3 for MMA resins, and from 2.3 to 9.9 for the composite luting materials. A zinc phosphate cement showed the highest value (12.9), whereas five shades of MMA resin resulted in the lowest value (less than 0.5). Two RMGIs and three composite luting materials exhibited radiopacity values between those of enamel (4.3) and dentin (2.3). It can be concluded that the radiopacity value of luting materials varies considerably, and that care must be taken when selecting luting materials, considering the material composition of restorations.

Download full-text PDF

Source
http://dx.doi.org/10.2334/josnusd.51.223DOI Listing

Publication Analysis

Top Keywords

luting materials
32
composite luting
12
materials
9
resin-modified glass
8
luting
8
radiopacity values
8
enamel dentin
8
radiopacity
5
radiopacity conventional
4
conventional resin-modified
4

Similar Publications

Investigate the impact of antimicrobial photodynamic therapy (aPDT) using different photosensitizers (PSs) such as indocyanine green (IG), curcumin (CC), and methylene blue (MB), with or without intracanal application of calcium hydroxide (CH), on the push-out bond strength of glass-fiber posts (GFPs) to intraradicular dentin, the chemical composition of the root substrate, and the sealing of the adhesive interface across different thirds of intraradicular dentin. A total of 112 bovine teeth underwent biomechanical preparation and were divided into eight experimental groups (n = 14 each): Negative control with deionized water; positive control with deionized water + CH; IG group with indocyanine green and infrared laser; IG + CH group; CC group with curcumin and blue LED; CC + CH group; MB group with methylene blue and red laser; and MB + CH group. The push-out bond strength was measured using a universal testing machine (n = 8), and scanning electron microscopy characterized the fracture patterns.

View Article and Find Full Text PDF

Wear Resistance of Light-Cure Resin Luting Cements for Ceramic Veneers.

J Funct Biomater

December 2024

Department of Operative Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Japan.

The purpose of this study was to compare the wear resistance of light-cure resin luting cements for veneers with that of other luting materials investigated in earlier studies. An Alabama wear-testing machine was used to measure the wear resistance of four recent light-cure resin luting cements for veneers (G-Cem Veneer; Panavia V5 LC; RelyX Veneer Cement; and Vario-link Esthetic LC). The volume loss ranged from 0.

View Article and Find Full Text PDF

Does the Type of Resin Luting Material Affect the Bonding of CAD/CAM Materials to Dentin?

Dent J (Basel)

January 2025

Department of Restorative Dentistry, Faculty of Dentistry, Yeditepe University, İstanbul 34728, Turkey.

This study aimed to investigate the microtensile bond strength (µTBS) of composite-based (Cerasmart), polymer-infiltrated (Vita Enamic), and feldspathic (Cerec) CAD/CAM blocks luted to dentin using a dual-cure resin cement (LinkForce), as well as micro-hybrid (G-aenial) and flowable composites (G-aenial Universal Flo), and evaluate the microhardness (HV) of luting materials through the CAD/CAM blocks. Cerasmart, Enamic, and Cerec were luted to dentin using three luting materials; LinkForce, G-aenial, and Universal Flo (n = 5). For HV, 117 disk-shaped specimens from LinkForce, G-aenial, and Universal Flo (n = 13) were polymerized through 3 mm thick CAD/CAM.

View Article and Find Full Text PDF

Purpose: To compare the effect of post-and-core material type and production technique on the fracture resistance of teeth.

Materials And Methods: Sixty human maxillary central incisors were used for the study. Root canal treatments were performed, and the post cavities were created.

View Article and Find Full Text PDF

The World Health Organization (WHO) has added glass ionomer cement (GIC) to the WHO Model List of Essential Medicines since 2021, which represents the most efficacious, safe and cost-effective medicines for priority conditions. With the potential increase in the use of GIC, this review aims to provide an overview of the clinical application of GIC with updated evidence in restorative and preventive dentistry. GIC is a versatile dental material that has a wide range of clinical applications, particularly in restorative and preventive dentistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!