In the adult dentate gyrus, radial glia-like cells represent putative stem cells generating neurons and glial cells. Here, we combined patch-clamp recordings, biocytin filling, immunohistochemistry, single-cell transcript analysis, and mouse transgenics to test for connexin expression and gap junctional coupling of radial glia-like cells and its impact on neurogenesis. Radial glia-like cells were identified in mice expressing EGFP under control of the nestin and gfap promoters. We show that a majority of Radial glia-like cells are coupled and express Cx43. Neuronal precursors were not coupled. Mice lacking Cx30 and Cx43 in GFAP-positive cells displayed almost complete inhibition of proliferation and a significant decline in numbers of radial glia-like cells and granule neurons. Inducible virus-mediated ablation of connexins in the adult hippocampus also reduced neurogenesis. These findings strongly suggest the requirement of connexin expression by radial glia-like cells for intact neurogenesis in the adult brain and point to possible communication pathways of these cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2700144 | PMC |
http://dx.doi.org/10.1073/pnas.0813160106 | DOI Listing |
BMC Biol
January 2025
Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany.
Background: Glioblastoma multiforme (GBM) is characterized by its cellular complexity, with a microenvironment consisting of diverse cell types, including oligodendrocyte precursor cells (OPCs) and neoplastic CD133 + radial glia-like cells. This study focuses on exploring the distinct cellular transitions in GBM, emphasizing the role of alternative polyadenylation (APA) in modulating microRNA-binding and post-transcriptional regulation.
Results: Our research identified unique APA profiles that signify the transitional phases between neoplastic cells and OPCs, underscoring the importance of APA in cellular identity and transformation in GBM.
Eur J Neurosci
September 2024
Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, Yonago, Japan.
The subventricular zone (SVZ) is one of the neurogenic regions of the adult mammalian brain. Neural stem cells (NSCs) in the SVZ have certain key features: they express glial fibrillary acidic protein (GFAP), proliferate slowly, have a radial glia-like (RG-L) morphology, and are in contact with the cerebrospinal fluid (CSF). NSCs have been isolated by FACS to analyse them, but their morphology has not been systematically examined.
View Article and Find Full Text PDFSci Adv
July 2024
Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) - CONICET, Buenos Aires, Argentina.
The adult hippocampus generates new granule cells (aGCs) with functional capabilities that convey unique forms of plasticity to the preexisting circuits. While early differentiation of adult radial glia-like cells (RGLs) has been studied extensively, the molecular mechanisms guiding the maturation of postmitotic neurons remain unknown. Here, we used a precise birthdating strategy to study aGC differentiation using single-nuclei RNA sequencing.
View Article and Find Full Text PDFNat Commun
April 2024
Institut Pasteur, Université Paris Cité, CNRS UMR3738, Zebrafish Neurogenetics Unit, Team supported by the Ligue Nationale Contre le Cancer, F-75015, Paris, France.
Macroglia fulfill essential functions in the adult vertebrate brain, producing and maintaining neurons and regulating neuronal communication. However, we still know little about their emergence and diversification. We used the zebrafish D.
View Article and Find Full Text PDFThe adult hippocampus generates new granule cells (aGCs) that exhibit distinct functional capabilities along development, conveying a unique form of plasticity to the preexisting circuits. While early differentiation of adult radial glia-like neural stem cells (RGL) has been studied extensively, the molecular mechanisms guiding the maturation of postmitotic neurons remain unknown. Here, we used a precise birthdating strategy to follow newborn aGCs along differentiation using single-nuclei RNA sequencing (snRNA-seq).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!