Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The rapid evolution of ejaculate components is considered to be largely driven by sexual selection. Less attention has been paid to the fact that sperm and microorganisms frequently meet; we consequently predict selection for substances that protect a male's ejaculate. We report, for the first time, bacteriolytic activity (lysozyme-like immune activity [LLA]) in the ejaculate of an animal, the common bedbug Cimex lectularius. We also show that in almost half the males LLA in the seminal fluid exceeded LLA in the hemolymph. We detected no antimicrobial peptide activity in seminal fluid. Because lysozymes degrade only bacteria, our results suggest that sperm-microbe interactions are probably important in the evolution of ejaculate components and thereby provide a route for natural selection to account for some of the diversity of seminal components.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/600099 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!