We investigate the effects of polymer chains and nanoparticles on the deformation of a droplet in shear and extensional flow using computational modeling that accounts for both the solid and fluid phases explicitly. We show that under shear flow, both the nanoparticles and the encapsulated polymers reduce the shear-induced deformation of the droplet at intermediate capillary numbers. At high capillary numbers, however, long polymer chains can induce the breakup of the droplet. We find that the latter behavior is dependent on the nature of the imposed flow. Specifically, under extensional flow, long polymers inhibit the droplet breakup and reduce deformation. Overall, the findings provide guidelines for tailoring the stability of filled droplets under an imposed flow, and thus, the results can provide useful design rules in a range of technological applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3153922 | DOI Listing |
Int J Biol Macromol
December 2024
Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea. Electronic address:
The nanocellulosic pellicle derived from the symbiotic culture of bacteria and yeast (Kombucha SCOBY) is an important biomaterial for 3D bioprinting in tissue engineering. However, this nanocellulosic hydrogel has a highly entangled gel network. This needs to be partially modified to improve its processability and extrusion ability for its applications in the 3D bioprinting area.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain. Electronic address:
The generation of long-chain branches (LCB) in biobased and biodegradable polylactide (PLA) by adding different amounts of a chain extender is studied. The rheological and calorimetric behavior have been used to determine the effect of LCB presence and their topology on PLA melt strength and crystallization behavior. Rheological modeling of linear and non-linear viscoelastic shear and extensional properties identified several possible branched structures.
View Article and Find Full Text PDFSoft Matter
November 2024
Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France.
Drops in extensional flow undergo a deformation, which is primarily fixed by a balance between their surface tension and the viscous stress. This deformation, predicted and measured by Taylor on millimetric drops, is expected to be affected by the presence of surfactants but has never been measured systematically. We provide a controlled experiment allowing us to measure this deformation as a function of the drop size and of the shear stress for different surfactants at varying concentrations.
View Article and Find Full Text PDFBiofabrication
October 2024
Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India.
In the realm of tissue engineering, replicating the intricate alignment of cells and the extracellular matrix (ECM) found in native tissue has long been a challenge. Most recent studies have relied on complex multi-step processes to approximate native tissue alignment. To address this challenge, we introduce a novel, single-step method for constructing highly aligned fibrous structures within multi-modular three-dimensional conglomerates.
View Article and Find Full Text PDFPolymers (Basel)
September 2024
Department of Petroleum Engineering, College of Petroleum and Geoscience, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
Enhanced oil recovery (EOR) methods are generally employed in depleted reservoirs to increase the recovery factor beyond that of water flooding. Polymer flooding is one of the major EOR methods. EOR polymer solutions (especially the synthetic ones characterized by flexible chains) that flow through porous media are not only subjected to shearing forces but also extensional deformation, and therefore, they exhibit not only Newtonian and shear thinning behavior but also shear thickening behavior at a certain porous media shear rate/velocity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!