Gay-Berne liquid crystals confined in two cylindrical nanopores with different pore sizes were studied by molecular dynamics simulation. Their structure and dynamics properties were obtained and compared with those of the bulk. Our data show that confinement changes the bulk isotropic-to-nematic transition to a continuous ordering from a paranematic to a nematic phase. Moreover, confinement strongly hinders the smectic translational order. The molecular dynamics is characterized by the translational diffusion coefficients and the first-rank reorientational correlation times. Very different characteristic times and temperature variations in the dynamics are observed in confinement. Spatially resolved quantities illustrate that confinement induces predominant structural and dynamical heterogeneities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3148889 | DOI Listing |
Sci Total Environ
January 2025
Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
The COVID-19 pandemic highlighted shortcomings in forecasting models, such as unreliable inputs/outputs and poor performance at critical points. As COVID-19 remains a threat, it is imperative to improve current forecasting approaches by incorporating reliable data and alternative forecasting targets to better inform decision-makers. Wastewater-based epidemiology (WBE) has emerged as a viable method to track COVID-19 transmission, offering a more reliable metric than reported cases for forecasting critical outcomes like hospitalizations.
View Article and Find Full Text PDFComput Biol Med
January 2025
Departamento de Ingeniería Energética, Universidad Politécnica de Madrid, Avda. de Ramiro de Maeztu 7, Madrid, 28040, Spain. Electronic address:
Background: Despite the significant advances made in the field of computational fluid dynamics (CFD) to simulate the left atrium (LA) in atrial fibrillation (AF) conditions, the connection between atrial structure, flow dynamics, and blood stagnation in the left atrial appendage (LAA) remains unclear. Deepening our understanding of this relationship would have important clinical implications, as the thrombi formed within the LAA are one of the main causes of stroke.
Aim: To highlight and better understand the fundamental role of the PV orientation in forming atrial flow patterns and systematically quantifying its effect on blood stasis within the LAA.
Cortex
December 2024
Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
Bilingual language control is a dynamic cognitive system that enables individuals to effectively manage language use and prevent interference when switching between languages. Research indicates that certain neurodegenerative conditions may influence language-switching abilities or hinder the suppression of cross-language interference. However, it remains uncertain whether neurodegeneration primarily affecting mesial temporal structures, such as Mild Cognitive Impairment (MCI), impacts lexical retrieval in dual-language naming conditions.
View Article and Find Full Text PDFMidwifery
December 2024
Centre for Healthcare Resilience and Implementation Science, Australian Institute of Health Innovation, Macquarie University, Sydney, New South Wales, Australia.
Problem And Background: Gestational diabetes mellitus (GDM) is a common medical complication of pregnancy, and the emerging evidence demonstrates how GDM online communities have a positive impact on promoting self-management and improving outcomes. Further analysis of such groups can increase understanding of how peer support in GDM online communities is enabled and enacted.
Aim: To examine women's experiences of GDM online communities on Facebook, their motivations for participation, and perceptions of dynamics within the community.
J Hazard Mater
January 2025
School of Environment, Tsinghua University, Beijing 100084, China. Electronic address:
Using sewage sludge compost (SSC) for abandoned mine land reclamation supports ecological sustainability, but the environmental behavior of heavy metals in this process lacks systematic field validation. Here we analyzed the dynamic changes in heavy metal composition in topsoil, surface runoff, and subsurface infiltration after large-scale reclamation. Results show that SSC application promoted plant growth by 2-4 times, enhanced the physicochemical structure of the topsoil, and increased the levels of organic matter and inorganic nutrients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!