During malolactic fermentation (MLF), lactic acid bacteria influence aroma and flavor of wines by the production of volatile metabolites and the modification of aroma compounds derived from grapes and yeasts. In an effort to isolate these bacteria properties as advantages for winemaking, this study aimed to assess the relative contribution of two aspects: the effects of lactic acid bacteria activity on the volatiles compounds in Tannat wines and the consequences of aging in bottle on aroma compounds produced during MLF. To our knowledge, this is the first report related to the effect of wine aging in bottle on the aroma chemical compounds produced by MLF. Solid phase extraction complemented with chromatographic techniques was used to study the wine aroma compounds. A sensory evaluation of the wines was also performed through descriptive methods. We demonstrated modifications in the concentration of acetates, ethyl esters, and other secondary metabolites during MLF. Major sensorial differences between wines that had undergone MLF were also noted. In addition, some modifications detected in the composition of Tannat wines as a consequence of the aging in bottle contributed to the change in differences between wines with and without MLF and furthermore between strains. These changes probably influence its fruity character.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf900941y | DOI Listing |
Chem Biodivers
January 2025
Liverpool John Moores University, Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Diospyros discolor Willd., commonly known as Velvet apple or Mabolo, is an underutilized fruit. Traditionally, various parts of D.
View Article and Find Full Text PDFCurr Res Food Sci
December 2024
Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore, 117543, Singapore.
A key factor influencing consumer acceptance of soybean products is the aroma and taste profile, which can be modulated through fermentation using unique microbial strains. This study aimed to identify and characterize novel microbial strains with the potential to enhance flavour profiles including umami, while reducing undesirable flavour notes such as beany aromas. The results showed an 800% (8-fold) increase in free amino acids in samples fermented with , which correlated with an increase in umami intensity as measured using an E-tongue.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Key Laboratory in Flavor and Fragrance Basic Research, Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, China.
Cigar tobacco leaves exhibited distinct regional characteristics, and aroma compounds were the key substances determining the different style features of cigars. However, the differences in aroma characteristics and the mechanisms of key aroma compound synthesis have not been fully elucidated. This study collected filler tobacco leaves (FTLs) from 5 representative domestic and international production regions.
View Article and Find Full Text PDFFood Chem
December 2024
Key Laboratory of Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Beijing University of Agriculture, Beijing 102206, PR China.
Lipid hydrolysis and oxidation properties, lipid metabolites, and volatile flavors were investigated to elucidate the wet-aging process (1 h to 10 d) on lipid molecule transformation and volatile flavor evolution in pork. Phospholipase A (PLA) activity increased at 12 h, with lipoxygenase (LOX) increasing from 1 h to 7 d (P < 0.05).
View Article and Find Full Text PDFFood Chem
December 2024
School of Light Industry Science and Engineering, School of Food Science and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.. Electronic address:
To understand flavor formation mechanisms in complex meat-like Maillard systems, effect of lysine on cysteine-xylose reaction to form flavors was studied. GC-MS and GC-O analyses found lysine of 1 times cysteine concentration led to the greatest amount of sulfur-containing meaty compounds while more additional lysine caused more pyrazine compounds. LC-MS analysis showed lysine competed with cysteine to form the early-stage intermediate of Lys-Amadori compounds and accelerated conversion of 2-threityl-thiazolidine-4-carboxylic acids to Cys-Amadori compounds from the cysteine-xylose reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!