Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background Aims: Amniotic fluid (AF) contains stem cells with high proliferative and differentiative potential that might be an attractive source of multipotent stem cells. We investigated whether human AF contains mesenchymal stem cells (MSC) and evaluated their phenotypic characteristics and differentiation potential in vitro.
Methods: AF was harvested during routine pre-natal amniocentesis at 14-16 weeks of pregnancy. AF sample pellets were plated in alpha-minimum essential medium (MEM) with 10% fetal bovine serum (FBS). We evaluated cellular growth, immunophenotype, stemness markers and differentiative potential during in vitro expansion. Neural progenitor maintenance medium (NPMM), a medium normally used for the growth and maintenance of neural stem cells, containing hFGF, hEGF and NSF-1, was used for neural induction.
Results: Twenty-seven AF samples were collected and primary cells, obtained from samples containing more than 6 mL AF, had MSC characteristics. AF MSC showed high proliferative potential, were positive for CD90, CD105, CD29, CD44, CD73 and CD166, showed Oct-4 and Nanog molecular and protein expression, and differentiated into osteoblasts, adypocytes and chondrocytes. The NPMM-cultured cells expressed neural markers and increased Na(+) channel density and channel inactivation rate, making the tetrodotoxin (TTX)-sensitive channels more kinetically similar to native neuronal voltage-gated Na(+) channels.
Conclusions: These data suggest that AF is an important multipotent stem cell source with a high proliferative potential able to originate potential precursors of functional neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14653240902974024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!