A unique optical fibre design is presented in this work: a laterally accessible microstructured optical fibre, in which one of the cladding holes is open to the surrounding environment and the waveguide core exposed over long lengths of fibre. Such a fibre offers the opportunity of real-time chemical sensing and biosensing not previously possible with conventional microstructured optical fibres, as well as the ability to functionalize the core of the fibre without interference from the cladding. The fabrication of such a fibre using PMMA is presented, as well as experimental results demonstrating the use of the fibre as a evanescent wave absorption spectroscopy pH sensor using the indicator Bromothymol Blue.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.15.011843DOI Listing

Publication Analysis

Top Keywords

optical fibres
8
optical fibre
8
microstructured optical
8
fibre
7
opening optical
4
fibres unique
4
unique optical
4
fibre design
4
design presented
4
presented work
4

Similar Publications

Purpose: To investigate the effect of average intraocular pressure (IOP) on the true rate of glaucoma progression (RoP) in the United Kingdom Glaucoma Treatment Study (UKGTS).

Methods: UKGTS participants were randomized to placebo or Latanoprost drops and monitored for up to two years with visual field tests (VF, 24-2 SITA standard), IOP measurements, and optic nerve imaging. We included eyes with at least three structural or functional assessments (VF with <15% false-positive errors).

View Article and Find Full Text PDF

BiFusionPathoNet: fusion network for drug-resistant bacteria identification optical scattering patterns.

Anal Methods

January 2025

Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China.

The presented research introduces a new method to identify drug-resistant bacteria rapidly with high accuracy using artificial intelligence combined with Multi-angle Dynamic Light Scattering (MDLS) signals and Raman scattering signals. The main research focus is to distinguish methicillin-resistant (MRSA) and methicillin-sensitive (MSSA). First, a microfluidic platform was developed embedded with optical fibers to acquire the MDLS signals of bacteria and Raman scattering signals obtained by using a Raman spectrometer.

View Article and Find Full Text PDF

Cell-type-specific activation of parvalbumin (PV)-expressing neurons in the external globus pallidus (GPe) through optogenetics has shown promise in facilitating long-lasting movement dysfunction recovery in mice with Parkinson's disease. However, its translational potential is hindered by adverse effects stemming from the invasive implantation of optical fibers into the brain. In this study, we have developed a non-invasive optogenetics approach, utilizing focused ultrasound-triggered mechanoluminescent nanotransducers to enable remote photon delivery deep in the brain for genetically targeted neuromodulation.

View Article and Find Full Text PDF

Radiofrequency ablation (RFA) is a minimally invasive procedure that utilizes localized heat to treat tumors by inducing localized tissue thermal damage. The present study aimed to evaluate the temperature evolution and spatial distribution, ablation size, and reproducibility of ablation zones in ex vivo liver, kidney, and lung using a commercial device, i.e.

View Article and Find Full Text PDF

Fast-neutron reactors are an important representative of Generation IV nuclear reactors, and due to the unique structure and material properties of fast reactor fuel, traditional mechanical cutting methods are not applicable. In contrast, laser cutting has emerged as an ideal alternative. However, ensuring the stability of optical fibers and laser cutting heads under high radiation doses, as well as maintaining cutting quality after irradiation, remains a significant technical challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!