Antisqueezed light is a possible resource to apply quantum information technologies to the real world. When antisqueezed light is used in secure optical communications, an LD is a preferable light source from an engineering point of view. Although LD output power is low, LD light can be antisqueezed with the help of an EDFA in a reflection-type interferometer consisting of a standard single-mode fiber of typically 5 km. The ellipticity of the obtained antisqueezed light was 9 at maximum in a balanced interferometer case, and the angle that was subtended by antisqueezed fluctuations at the origin of phase space was 23 degrees at maximum. The feasibility of secure optical communications using antisqueezed light is demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.15.011241 | DOI Listing |
We demonstrate the possibility to generate squeezed vacuum states of light by four wave mixing (FWM) enabled coherent population trapping in a metastable helium cell at room temperature. Contrary to usual FWM far detuned schemes, we work at resonance with an atomic transition. We investigate the properties of such states and show that the noise variances of the squeezed and anti-squeezed quadratures cannot be explained by the simple presence of losses.
View Article and Find Full Text PDFWe investigate the force measurement sensitivity in a squeezed dissipative optomechanics within the free-mass regime under the influence of shot noise (SN) from the photon number fluctuations, laser phase noise from the pump laser, thermal noise from the environment, and optical losses from outcoupling and detection inefficiencies. Generally, squeezed light could generate a reduced SN on the squeezed quadrature and an enlarged quantum backaction noise (QBA) due to the antisqueezed conjugate quadrature. With an appropriate choice of phase angle in homodyne detection, QBA is cancellable, leading to an exponentially improved measurement sensitivity for the SN-dominated regime.
View Article and Find Full Text PDFPhys Rev Lett
January 2018
Quantum Nanoelectronics Laboratory, Department of Physics, University of California, Berkeley, California 94720, USA.
Microwave squeezing represents the ultimate sensitivity frontier for superconducting qubit measurement. However, measurement enhancement has remained elusive, in part because integration with standard dispersive readout pollutes the signal channel with antisqueezed noise. Here we induce a stroboscopic light-matter coupling with superior squeezing compatibility, and observe an increase in the final signal-to-noise ratio of 24%.
View Article and Find Full Text PDFOpt Express
September 2007
Antisqueezed light is a possible resource to apply quantum information technologies to the real world. When antisqueezed light is used in secure optical communications, an LD is a preferable light source from an engineering point of view. Although LD output power is low, LD light can be antisqueezed with the help of an EDFA in a reflection-type interferometer consisting of a standard single-mode fiber of typically 5 km.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!