A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution. | LitMetric

We investigate the scattering and multiple scattering of a typical laser beam (lambda = 800 nm) in the intermediate scattering regime. The turbid media used in this work are homogeneous solutions of monodisperse polystyrene spheres in distilled water. The two-dimensional distribution of light intensity is recorded experimentally, and calculated via Monte Carlo simulation for both forward and side scattering. The contribution of each scattering order to the total detected light intensity is quantified for a range of different scattering phase functions, optical depths, and detection acceptance angles. The Lorentz-Mie scattering phase function for individual particles is varied by using different sphere diameters (D = 1 and 5 mum). The optical depth of the turbid medium is varied (OD = 2, 5, and 10) by employing different concentrations of polystyrene spheres. Detection angles of theta(a) = 1.5 degrees and 8.5 degrees are considered. A novel approach which realistically models the experimental laser source is employed in this paper, and very good agreement between the experimental and simulated results is demonstrated. The data presented here can be of use to validate any other modern Monte Carlo models which generate spatially resolved light intensity distributions. Finally, an effective correction procedure to the Beer-Lambert law is proposed based on the Monte Carlo calculation of the ballistic photon contribution to the total detected light intensity.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.15.010649DOI Listing

Publication Analysis

Top Keywords

light intensity
16
monte carlo
12
scattering
8
turbid media
8
experimental simulated
8
polystyrene spheres
8
total detected
8
detected light
8
scattering phase
8
intensity
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!