Extra ordinary transmission through arrays of subwavelength apertures has been investigated using near-field scanning optical microscopy. For such studies arrays were fabricated to give maximum resonance enhancement of light transmission at the wavelength of illumination that was used (532 nm). To define this enhancement a design was employed that allowed in one field of view of a near-field image the investigation of single apertures of dimension that was similar to what was incorporated into the sub-wavelength hole array. Significant asymmetry in the transmission and the propagation of the light along the aperture array was detected. This non-uniformity could be explained by polarization of the incident light, edge effects and the geometry of the array. The results support a hypothesis of both enhanced transmission due to surface plasmons and a non-diffracting beaming as a function of distance effect in the propagation of the light from the array.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.15.009129DOI Listing

Publication Analysis

Top Keywords

propagation light
8
transmission
5
near-field characterization
4
characterization extraordinary
4
extraordinary optical
4
optical transmission
4
transmission sub-wavelength
4
sub-wavelength aperture
4
aperture arrays
4
arrays extra
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!