Method for tracking vibrations with high amplitude of several hundreds of micrometers is presented. It is demonstrated that it is possible to reconstruct a synthetic high amplitude deformation of auto-oscillations encoded with digital Fresnel holograms. The setup is applied to the auto-oscillation of a clarinet reed in a synthetic mouth. Tracking of the vibration is performed by using the pressure signal delivered by the mouth. Experimental results show the four steps of the reed movement and especially emphasize the shocks of the reed on the mouthpiece.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.15.008263 | DOI Listing |
Clin Neurophysiol
January 2025
Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil; Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil. Electronic address:
Introduction: Freezing of gait (FOG) is a disabling symptom that affects over half of Parkinson's disease patients (PD) and hinders the ability to walk. Subthalamic nucleus (STN) deep brain stimulation (DBS) effectiveness in ameliorating the FOG remains controversial, lacking a reliable electrophysiological biomarker from local field potentials (LFP).
Methods: The LFP-STN rhythms bandpower and dynamics were characterized at rest across groups in a cohort of 23 patients (14 with FOG, and 9 without, n-FOG).
Rev Sci Instrum
January 2025
School of Mechatronics Engineering, Anhui University of Science and Technology, Huainan 232001, China.
This paper presents a coaxial integrated macro-micro composite actuator. The macro-actuator of the macro-micro composite actuator is similar to a moving coil type voice coil motor, and a giant magnetostrictive actuator is installed coaxially inside it as a micro-actuator. In this work, kinetic models are established for both the macro-actuator and micro-actuator, and based on the models, an automatic disturbance rejection controller is adopted to control the macro-actuator, and a fuzzy sliding mode controller is adopted for the micro-actuator.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Department of Biomedical Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
Humans expend more energy walking on uneven terrain, but the amount varies across terrains. Few experimental characterizations exist, each describing terrain qualitatively without any relation to others or flat ground. This precludes mechanistic explanation of the energy costs.
View Article and Find Full Text PDFFront Immunol
January 2025
Univ. Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France.
Background: Patients with chronic hepatitis B virus (HBV) infection are characterized by impaired immune response that fails to eliminate HBV. Immune checkpoint molecules (ICMs) control the amplitude of the activation and function of immune cells, which makes them the key regulators of immune response.
Methods: We performed a multiparametric flow cytometry analysis of ICMs and determined their expression on intrahepatic lymphocyte subsets in untreated and treated patients with HBV in comparison with non-pathological liver tissue.
Comput Struct Biotechnol J
December 2024
Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan.
An AI-assisted algorithm has been developed to improve the detection of significant coronary artery disease (CAD) in high-risk individuals who have normal electrocardiograms (ECGs). This retrospective study analyzed ECGs from patients aged ≥ 18 years who were undergoing coronary angiography to obtain a clinical diagnosis at Chang Gung Memorial Hospital in Taiwan. Utilizing 12-lead ECG datasets, the algorithm integrated features like time intervals, amplitudes, and slope between peaks, a total of 561 features, with the XGBoost model yielding the best performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!