The spectral dependency of the particulate backscattering ratio is relevant in the fields of ocean color inversion, light field modeling, and inferring particle properties from optical measurements. Aside from theoretical predictions for spherical, homogeneous particles, we have very limited knowledge of the actual in situ spectral variability of the particulate backscattering ratio. This work presents results from five research cruises that were conducted over a three-year period. Water column profiles of physical and optical properties were conducted across diverse aquatic environments that offered a wide range of particle populations. The main objective of this research was to examine the behavior of the spectral particulate backscattering ratio in situ, both in terms of its absolute magnitude and its variability across visible wavelengths, using over nine thousand 1-meter binned data points for each of five wavelengths of the spectral particulate backscattering ratio. Our analysis reveals no spectral dependence of the particulate backscattering ratio within our measurement certainty, and a geometric mean value of 0.013 for this dataset. This is lower than the commonly used value of 0.0183 from Petzold's integrated volume scattering data. Within the first optical depth of the water column, the mean particulate backscattering ratio was 0.010.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.15.007019DOI Listing

Publication Analysis

Top Keywords

particulate backscattering
28
backscattering ratio
28
spectral variability
8
variability particulate
8
water column
8
spectral particulate
8
particulate
7
backscattering
7
ratio
7
spectral
6

Similar Publications

Aerosol transport and associated boundary layer thermodynamics under contrasting synoptic conditions over a semiarid site.

Sci Total Environ

January 2025

Department of Geosciences, Atmospheric Science Division, Texas Tech University, Lubbock, TX, USA; National Wind Institute, Texas Tech University, Lubbock, TX, USA. Electronic address:

Understanding the kinematics of aerosol horizontal transport and vertical mixing near the surface, within the atmospheric boundary layer (ABL), and in the overlying free troposphere (FT) is critical for various applications, including air quality and weather forecasting, aviation, road safety, and dispersion modeling. Empirical evidence of aerosol mixing processes within the ABL during synoptic-scale events over arid and semiarid regions (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • The study addresses the challenge of accurately measuring particulate organic carbon (POC) in coastal waters due to the complex variability of marine particles.
  • A new method was created that uses the ratio of phytoplankton to detritus absorption coefficients to classify water types, leading to strong correlations between POC and specific optical measurements in certain water samples.
  • This method outperforms traditional algorithms and introduces a depth-resolved index for better representation of POC distribution, enhancing our understanding of its three-dimensional structure in ocean environments.
View Article and Find Full Text PDF

Microplastic pollution presents a serious risk to marine ecosystems worldwide, with West Africa being especially susceptible. This study sought to identify the key factors driving microplastic dynamics in the region. Using NASA's Giovanni system, we analyzed environmental data from 2019 to 2024.

View Article and Find Full Text PDF

It is important to determine the relationship between the concentration of chlorophyll a (Chla) and the inherent optical properties (IOPs) of ocean water to develop optical models and algorithms that characterize the biogeochemical properties and estimate biological pumping and carbon flux in this environment. However, previous studies reported relatively large variations in the particulate backscattering coefficient (b(λ)) and Chla from more eutrophic high-latitude waters to clear oligotrophic waters, especially in oligotrophic oceanic areas where these two variables have little covariation. In this study, we examined the variability of b(λ) and Chla in the euphotic layer in oligotrophic areas of the tropical Western Pacific Ocean and determined the sources of these variations by reassessment of in-situ measurements and the biogeochemical-argo (BGC-Argo) database.

View Article and Find Full Text PDF

Lidar has emerged as a promising technique for vertically profiling optical parameters in water. The application of single-photon technology has enabled the development of compact oceanic lidar systems, facilitating their deployment underwater. This is crucial for conducting ocean observations that are free from interference at the air-sea interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!