Optical differential phase shift keying is normally demodulated in a delay-line interferometer with a 1-bit delay such that the free-spectral-range of the demodulator is equal to the transmitted bitrate. We show using Karkunen-Loeve expansion simulation that free-spectral-range optimization leads to increased chromatic dispersion tolerances. The optimized delay inversely scales with the amount of chromatic dispersion such that a delay slightly shorter than the bit period increases tolerances with no adverse effect on the polarization-mode-dispersion tolerance or frequency offset penalty at the receiver.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.15.006817 | DOI Listing |
As a low-energy method to increase the data rate of optical links in data centers, we propose self-homodyne Nyquist optical time division multiplexing (OTDM). In Nyquist OTDM, spectrally efficient high-baud rate signals can be generated exceeding the limit of electronic signal processing. However, full integration of OTDM systems has not been reported, mainly because of the complicated signal detection scheme, which involves demultiplexing and clock recovery.
View Article and Find Full Text PDFThis article conducts a comparative study of the complexity reduction of neural network (NN) models for nonlinearity compensation used in digital subcarrier multiplexing (DSCM)-based optical communication systems. We employ the NN model based on bi-directional long short-term memory (biLSTM) and 1D-convolutional NN (1D-CNN) layers. To reduce the computation complexity of the proposed solution, weight clustering is applied to the NN.
View Article and Find Full Text PDFVolterra nonlinear equalizer (VNE) is widely used in intensity modulation and direct detection (IM/DD) systems because it employs multi-order operations to effectively capture the nonlinear characteristics of signals as a generic tool. In the specific directly-modulated laser with direct detection (DML-DD) link, the interaction between the chirp of DML and chromatic dispersion (CD) can be modeled as composite second-order (CSO) distortion. By incorporating the CSO model into the nonlinear equalizer, it is possible to better extract the feature of the end-to-end channel, achieving superior performance with lower complexity.
View Article and Find Full Text PDFThe digital back-propagation (DBP) is an algorithm that can equalize the chromatic dispersion and nonlinearity in the coherent optical fiber communication system. However, the nonlinear equalization effect of traditional split-step Fourier method (SSFM)-based DBP is limited. This paper replaces the SSFM in DBP algorithm with the fourth-order Runge-Kutta in the interaction picture (RK4IP) method, and employs the Bayesian optimization algorithm (BOA) to optimize the coefficients in RK4IP-based DBP algorithm, then compares it with SSFM-based DBP algorithm, which is also optimized using BOA.
View Article and Find Full Text PDFThe explosive growth of mobile data traffic and the demands of 6 G networks for ultra-high data rates and low latency necessitate advanced infrastructure solutions. One promising approach is the implementation of radio-over-fiber (RoF)-based distributed antenna systems (DAS), which can efficiently transmit radio frequency signals over optical fiber, especially in dense indoor environments. However, analog RoF systems face challenges, including noise, nonlinearities, and power fading caused by chromatic dispersion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!