Microcavities based on multimodal interference.

Opt Express

Dept. of Physics, Center for Materials Science and Engineering, Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge 02139, Massachusetts, USA.

Published: May 2007

We describe intricate cavity mode structures, that are possible in waveguide devices with two or more guided modes. The main element is interference between the scattered fields of two modes at the facets, resulting in multipole or mode cancelations. Therefore, strong coupling between the modes, such as around zero group velocity points, is advantageous to obtain high quality factors. We discuss the mechanism in three different settings: a cylindrical structure with and without negative group velocity mode, and a surface plasmon device. A general semi-analytical expression for the cavity parameters describes the phenomenon, and it is validated with extensive numerical calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.15.006268DOI Listing

Publication Analysis

Top Keywords

group velocity
8
microcavities based
4
based multimodal
4
multimodal interference
4
interference describe
4
describe intricate
4
intricate cavity
4
cavity mode
4
mode structures
4
structures waveguide
4

Similar Publications

Exercise stress test-induced hypofibrinolysis and changes in circulating levels of several interleukins have been observed in aortic stenosis (AS). However, it is unknown whether the pattern of exercise-induced changes in oxidative stress differs between AS patients and controls and if the differences are associated with changes in fibrinolysis and inflammation. We studied 32 asymptomatic patients with moderate-to-severe AS and 32 controls of similar age, sex, and body mass index.

View Article and Find Full Text PDF

Background: Acute kidney injury (AKI) occurs in up to 50% of cardiac surgical patients and is often hemodynamically mediated. Point-of-care ultrasound is a non-invasive tool that has the potential to characterize intrarenal hemodynamics and predict the risk of AKI.

Objectives: We aimed to determine the predictive characteristics of intrarenal arterial and venous Doppler markers for postoperative AKI in cardiac surgical patients.

View Article and Find Full Text PDF

Significance: The eye can be used as a potential monitoring window for screening, diagnosis, and monitoring of neurological diseases. Alzheimer's disease (AD) and vascular cognitive impairment (VCI) are common causes of cognitive impairment and may share many similarities in ocular signs. Multimodal ophthalmic imaging is a technology to quantify pupillary light reaction, retinal reflectance spectrum, and hemodynamics.

View Article and Find Full Text PDF

Background Human growth and development involve significant changes in bodily dimensions, yet motor learning appears to remain stable throughout life. This study investigates whether adjustments in motor velocity take place as individuals age by examining the latency of transcranial motor-evoked potentials (TcMEPs) across different age groups. Methods Data were collected from 100 patients who underwent surgery with intraoperative neuromonitoring at the All India Institute of Medical Sciences, New Delhi, between January 1, 2019, and January 1, 2020.

View Article and Find Full Text PDF

Evaluation of Arterial Stiffness Parameters Measurement With Noninvasive Methods-A Systematic Review.

Cardiol Res Pract

December 2024

Department of Family Medicine, Medical University of Białystok, Podlaskie Voivodeship, 15-054 Białystok, Poland.

Arterial stiffness, as determined by pulse wave velocity (PWV), is a recognized marker of cardiovascular risk. Noninvasive technologies have enabled easier and more accessible assessments of PWV. The current gold standard for measuring carotid-femoral PWV (cfPWV)-a reliable indicator of arterial stiffness-utilizes applanation tonometry devices, as recommended by the Artery Society Guidelines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!