We have experimentally investigated the impact of codirectional Raman gains on the performance of distributed fiber Raman amplified systems. The effects of various noise sources, such as optical signal-to-noise ratio (OSNR) degradation, fiber nonlinearities and surviving channel gain variation in different Raman pumping schemes, were evaluated as a function of input power into a fiber span. For measurements, distributed Raman gain was generated by pumping the fiber span with different combinations of Raman pump power between co- and counterdirections. From the results, we found that a large counterdirectional Raman gain assisted by a small codirectional gain could improve the overall static and dynamic performance of distributed Raman amplified systems.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.15.006146DOI Listing

Publication Analysis

Top Keywords

raman gain
12
raman
8
codirectional raman
8
performance distributed
8
raman amplified
8
amplified systems
8
fiber span
8
distributed raman
8
gain
5
experimental study
4

Similar Publications

Effective engineering of nanostructured materials provides a scope to explore the underlying photoelectric phenomenon completely. A simple cost-effective chemical reduction route is taken to grow nanoparticles of Cd Zn S with varying = 1, 0.7, 0.

View Article and Find Full Text PDF

Beyond conventional characterization: Defect engineering role for sensitivity and selectivity of room-temperature UV-assisted graphene-based NO₂ sensors.

Talanta

January 2025

Instituto de Magnetismo Aplicado, UCM-ADIF, Las Rozas, 28230, Spain; Departamento de Física de Materiales, Universidad Complutense de Madrid (UCM), 28040, Madrid, Spain. Electronic address:

The term graphene-based gas sensors may be too broad, as there are many physicochemical differences within the graphene-based materials (GBM) used for chemiresistive gas sensors. These differences condition the sensitivity, selectivity, recovery, and ultimately the sensing performance of these devices towards air pollutants. Continuous ultraviolet irradiation aids in the desorption of gas molecules and enhances sensor performance.

View Article and Find Full Text PDF

Energy-level rich nanorings hybridizing Ag, Au and AgCl as high-performance SERS substrate for numerous molecules.

Talanta

January 2025

MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, China. Electronic address:

The current surface-enhanced Raman scattering (SERS) substrates typically feature a single energy level, posing challenges in coordinating electromagnetic enhancement (EM) and chemical enhancement (CM), thereby limiting the sensitive detection of numerous crucial target molecules. In this study, novel aggregated nanorings (a-NRs) hybridizing Ag, Au and AgCl are constructed as SERS substrates. On one hand, the obtained a-NRs exhibit robust localized surface plasmon resonance absorption, whose wavelength can be tuned to match three commonly used laser wavelengths (532, 633 and 785 nm) to gain strong EM effect.

View Article and Find Full Text PDF

Hydrogen Bonding Polarization Strengthening the Peptide-Based Hydrogels.

J Phys Chem B

January 2025

Research Institute of Interdisciplinary Science & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China.

Peptide-based hydrogels form a kind of promising material broadly used in biomedicine and biotechnology. However, the correlation between their hydrogen bonding dynamics and mechanical properties remains uncertain. In this study, we found that the adoption of β-sheet and α-helix secondary structures by ECF-5 and GFF-5 peptides, respectively, could further form fiber networks to immobilize water molecules into hydrogels.

View Article and Find Full Text PDF

Raman microscopy of the Cu/LiAlGe(PO) solid electrolyte interphase.

Chem Commun (Camb)

January 2025

Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

LiAlGe(PO) (LAGP) is a promising solid-state electrolyte (SSE) for solid-state batteries but suffers from side reactions with Li metal resulting in cracking and interfacial resistance rise which hinders its practical application. Herein, in operando Raman spectroscopy was performed to gain insights into local chemical and structural transformations of the Cu/LAGP interface during cathodic polarization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!