Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Several in vitro models that attempt to replicate the intraperitoneal environment have been developed to study the pathogenesis of endometriosis. The chicken chorioallantotic membrane has been used, but it has not been well characterized and may introduce some species specific variables. In vitro models using human tissues include amniotic membrane, human peritoneal explants, and cell culture monolayers. These models have been used to qualitatively, quantitatively, and temporally assess attachment of endometrial cells to peritoneal mesothelial and subsequent transmesothelial invasion. These models have also been used to assess the role of cytokines in the development of the early endometriotic lesion. Two- and three dimensional invasion chamber models have been utilized to assess endometrial cell interactions with peritoneal mesothelial cells and the extracellular matrix. Invasion models are also useful to evaluate novel therapeutic approaches. This review will focus on the above models to assist reproductive scientists interested in the pathogenesis of endometriosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1933719109338221 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!