Loss-of-function mutations in the parkin gene (PARK2) and PINK1 gene (PARK6) are associated with autosomal recessive parkinsonism. PINK1 deficiency was recently linked to mitochondrial pathology in human cells and Drosophila melanogaster, which can be rescued by parkin, suggesting that both genes play a role in maintaining mitochondrial integrity. Here we demonstrate that an acute down-regulation of parkin in human SH-SY5Y cells severely affects mitochondrial morphology and function, a phenotype comparable with that induced by PINK1 deficiency. Alterations in both mitochondrial morphology and ATP production caused by either parkin or PINK1 loss of function could be rescued by the mitochondrial fusion proteins Mfn2 and OPA1 or by a dominant negative mutant of the fission protein Drp1. Both parkin and PINK1 were able to suppress mitochondrial fragmentation induced by Drp1. Moreover, in Drp1-deficient cells the parkin/PINK1 knockdown phenotype did not occur, indicating that mitochondrial alterations observed in parkin- or PINK1-deficient cells are associated with an increase in mitochondrial fission. Notably, mitochondrial fragmentation is an early phenomenon upon PINK1/parkin silencing that also occurs in primary mouse neurons and Drosophila S2 cells. We propose that the discrepant findings in adult flies can be explained by the time of phenotype analysis and suggest that in mammals different strategies may have evolved to cope with dysfunctional mitochondria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755701 | PMC |
http://dx.doi.org/10.1074/jbc.M109.035774 | DOI Listing |
Nan Fang Yi Ke Da Xue Xue Bao
December 2024
Anhui Provincial Center for Neural Regeneration Technology and New Medical Materials Engineering Research, Bengbu Medical University, Bengbu 233000, China.
Objectives: To investigate the role of mitochondrial autophagy disorder caused by deletion of E3 ubiquitin ligase Parkin in neuroinflammation in a mouse model of MPTP-induced Parkinson's disease (PD).
Methods: Wild-type (WT) male C57BL/6 mice and Parkin mice were given intraperitoneal injections with MPTP or PBS for 5 consecutive days, and the changes in motor behaviors of the mice were observed using open field test. The effects of Parkin deletion on PD development and neuroinflammation were evaluated using immunofluorescence and Western blotting.
Environ Pollut
December 2024
Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, The People's Republic of China. Electronic address:
Microcystin-LR (MC-LR), a prevalent cyanotoxin present in hazardous cyanobacterial blooms, is recognized as a neurotoxic environmental pollutant that induces brain damage and neurobehavioral deficits. However, the mechanisms underlying MC-LR-induced neurotoxicity remain unclear. This study aims to elucidate the role of mitophagy in MC-LR-induced neurotoxicity both in vitro and in vivo.
View Article and Find Full Text PDFChem Biol Interact
December 2024
Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong,250021, People's Republic of China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China. Electronic address:
Doxorubicin (Dox) is a widely used antineoplastics although its clinical usage is greatly limited by its cardiotoxicity. Several studies have depicted an essential role for dampened mitophagy and mitochondrial injury in Dox cardiotoxicity. However, preventative measure to alleviate Dox-evoked cardiotoxicity via targeting mitophagy and mitochondrial integrity remains elusive.
View Article and Find Full Text PDFJ Adv Res
December 2024
Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu, China. Electronic address:
Introduction: Inflammatory diseases, such as diabetes mellitus, rheumatoid arthritis, and inflammatory bowel disease, lead to systemic immune microenvironment disturbances, contributing to bone loss, yet the mechanisms by which specific receptors regulate this process in inflammatory bone loss remain poorly understood. As a G-protein-coupled receptor, the Apelin receptor plays a crucial role in the regulation of inflammation and immune microenvironment. However, the precise mechanisms governing its role in inflammatory bone loss remain incompletely understood.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
Low back pain (LBP) caused by nucleus pulposus degeneration and calcification leads to great economic and social burden worldwide. Unexpectedly, no previous studies have demonstrated the association and the underlying mechanism between nucleus pulposus tissue degeneration and calcification formation. Secreted Phosphoprotein 1 (SPP1) exerts crucial functions in bone matrix mineralization and calcium deposition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!