Systemic injection of Bacillus anthracis lethal toxin (LT) produces vascular leakage and animal death. Recent studies suggest that LT triggers direct endothelial cell cytotoxicity that is responsible for the vascular leakage. LT is composed of heptamers of protective antigen (PA), which drives the endocytosis and translocation into host cells of the lethal factor (LF), a mitogen-activated protein kinase kinase protease. Here we investigated the consequences of injection of an endothelium-permeabilizing factor using LT as a "molecular syringe." To this end, we generated the chimeric factor LE, corresponding to the PA-binding domain of LF (LF(1-254)) fused to EDIN exoenzyme. EDIN ADP ribosylates RhoA, leading to actin cable disruption and formation of transcellular tunnels in endothelial cells. We report that systemic injection of LET (LE plus PA) triggers a PA-dependent increase in the pulmonary endothelium permeability. We also report that native LT induces a progressive loss of endothelium barrier function. We established that there is a direct correlation between the extent of endothelium permeability induced by LT and the cytotoxic activity of LT. This suggests new ways to design therapeutic drugs against anthrax directed toward vascular permeability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2738014 | PMC |
http://dx.doi.org/10.1128/IAI.00186-09 | DOI Listing |
BMC Infect Dis
January 2025
Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, 21702, United States of America.
Background: Point of need diagnostics provide efficient testing capability for remote or austere locations, decreasing the time to answer by minimizing travel or sample transport requirements. Loop-mediated isothermal amplification (LAMP) is an appealing technology for point-of-need diagnostics due to its rapid analysis time and minimal instrumentation requirements.
Methods: Here, we designed and optimized nine LAMP assays that are sensitive and specific to targeted bacterial select agents including Bacillus anthracis, Francisella tularensis, Yersinia pestis, and Brucella spp.
Am J Trop Med Hyg
January 2025
MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda.
Between April and November 2023, 27 unexplained human deaths that presented with swelling of the arms, skin sores with black centers, difficulty in breathing, obstructed swallowing, headaches, and other body aches were reported in Kyotera District, Uganda by the Public Health Emergency Operations Center. Subsequently, the death of cattle on farms and the consumption of carcass meat by some residents were also reported. Field response teams collected clinical/epidemiological data and autopsy samples to determine the cause of deaths.
View Article and Find Full Text PDFMicroorganisms
December 2024
Targeted Therapy Team, Institute for Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
The COVID-19 and mpox crisis has reminded the world of the potentially catastrophic consequences of biological agents. Aside from the natural risk, biological agents can also be weaponized or used for bioterrorism. Dissemination in a population or among livestock could be used to destabilize a nation by creating a climate of terror, by negatively impacting the economy and undermining institutions.
View Article and Find Full Text PDFImmunol Rev
January 2025
Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium.
Inflammasomes are crucial mediators of both antimicrobial host defense and inflammatory pathology, requiring stringent regulation at multiple levels. This review explores the pivotal role of mitogen-activated protein kinase (MAPK) signaling in modulating inflammasome activation through various regulatory mechanisms. We detail recent advances in understanding MAPK-mediated regulation of NLRP3 inflammasome priming, licensing and activation, with emphasis on MAPK-induced activator protein-1 (AP-1) signaling in NLRP3 priming, ERK1 and JNK in NLRP3 licensing, and TAK1 in connecting death receptor signaling to NLRP3 inflammasome activation.
View Article and Find Full Text PDFElectrophoresis
January 2025
National Institute for Nuclear, Chemical and Biological Protection, Kamenna, Czech Republic.
Timely identification of highly pathogenic bacteria is crucial for efficient mitigation of the connected harmful health effects. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of intact cells enables fast identification of the microorganisms based on their mass spectrometry protein fingerprint profiles. However, the MALDI-TOF MS examination must be preceded by a time-demanding cultivation of the native bacteria to isolate representative cell samples to obtain indicative fingerprints.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!