Since the implementation of quantitative ultrasound (QUS) technology may become a part of future clinical decision making to identify osteoporosis and prevent fractures, this study was initiated to evaluate the correlations of QUS parameters and axial bone mineral density (BMD) using dual energy X-ray absorptiometry (DXA) and to assess the discrimination of QUS measurements for osteoporosis and osteopenia defined by WHO criteria. 106 native Chinese women (aged 50.2±10.9 SD, 21-74 years) were involved. Each subject received both QUS measurements at left calcaneus with Achilles InSight and DXA measurements with DPX-L at lumbar spine (L(2-4)), total hip and femoral neck. Achilles InSight provided the stiffness index (SI) which derived from Broadband Ultrasound Attenuation (BUA) and Speed of Sound (SOS), and the T-scores of SI were calculated. We found that the QUS parameter SI was statistically significant but medium correlated (r=0.458-0.587) with DXA at the lumbar spine, total hip and femoral neck (P<0.0001 for all correlations). With ROC analysis, the area under the ROC curve of diagnosis of osteoporosis and osteopenia were 0.933 and 0.796, respectively. To identify osteoporosis, when the T-score threshold of SI was defined as -1.4, the sensitivity was 100%, and the specificity was 73.7%. Our study confirmed that QUS measurements performed with Achilles InSight were capable to identify osteoporosis defined by axial BMD using DXA in Chinese women.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejrad.2009.05.046DOI Listing

Publication Analysis

Top Keywords

achilles insight
12
assess discrimination
8
quantitative ultrasound
8
chinese women
8
dual energy
8
energy x-ray
8
x-ray absorptiometry
8
qus measurements
8
lumbar spine
8
total hip
8

Similar Publications

Background: Orthopaedic devices represent a large amount of the overall cost incurred in the operating room. It is unknown if employed sports medicine surgeons are aware of the true prices of these devices. The purpose of this study was to assess sports medicine orthopaedic surgeons' knowledge of implant and device costs, as well of commonly used items in their operating rooms.

View Article and Find Full Text PDF

Background: Achilles tendinopathy (AT) management can be difficult, given the paucity of effective treatment options and the degenerative nature of the condition. Innovative therapies for Achilles tendinopathy are therefore direly needed. New therapeutic developments predominantly begin with preclinical animal and in vitro studies to understand the effects at the molecular level and to evaluate toxicity.

View Article and Find Full Text PDF

Introduction Achilles tendon rupture (ATR) represents a significant musculoskeletal injury that can affect many patients' mobility and quality of life. Treatment of ATR consists of both conservative and surgical options, with the traditional belief being that surgical intervention reduces the risk of re-rupture. However, with the introduction of physiotherapy-led functional rehabilitation strategies with early mobilization, it has been shown that re-rupture rates are equal among surgical and non-surgical patients.

View Article and Find Full Text PDF

Purpose: Eccentric calf training for Achilles tendinopathy shows variable success in athletes. Recent insights suggest a role for tendon fluid flow (exudation or redistribution) during exercise, which explains post-exercise reductions in thickness and increases in stiffness of the tendon. This fluid flow is thought to be beneficial as it may promote tendon remodeling, reduce intratendinous pressure, and alleviate pain.

View Article and Find Full Text PDF

Background: Gadolinium-based contrast agents (GBCA) are widely used in magnetic resonance imaging (MRI) to enhance image contrast by interacting with water molecules, thus improving diagnostic capabilities. However, understanding the residual accumulation of GBCA in tissues after administration remains an area of active research. This highlights the need for advanced analytical techniques capable of investigating interactions between GBCAs and biopolymers, such as type I collagen, which are abundant in the body.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!