In the present study, we used benchtop magnetic resonance imaging (BT-MRI) for non-invasive and continuous in vivo studies of in situ forming poly(lactide-co-glycolide) (PLGA) implants without the use of contrast agents. Polyethylene glycol (PEG) 400 was used as an alternative solvent to the clinically used NMP. In addition to BT-MRI, we applied electron paramagnetic resonance (EPR) spectroscopy to characterize implant formation and drug delivery processes in vitro and in vivo. We were able to follow key processes of implant formation by EPR and MRI. Because EPR spectra are sensitive to polarity and mobility, we were able to follow the kinetics of the solvent/non-solvent exchange and the PLGA precipitation. Due to the high water affinity of PEG 400, we observed a transient accumulation of water in the implant neighbourhood. Furthermore, we detected the encapsulation by BT-MRI of the implant as a response of the biological system to the polymer, followed by degradation over a period of two months. We could show that MRI in general has the potential to get new insights in the in vivo fate of in situ forming implants. The study also clearly shows that BT-MRI is a new viable and much less expensive alternative for superconducting MRI machines to monitor drug delivery processes in vivo in small mammals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2009.06.008DOI Listing

Publication Analysis

Top Keywords

situ forming
12
plga implants
8
benchtop magnetic
8
magnetic resonance
8
resonance imaging
8
imaging bt-mri
8
epr spectroscopy
8
peg 400
8
implant formation
8
drug delivery
8

Similar Publications

The objective of this study was to investigate the physicochemical properties, drug release and in situ depot-forming behavior of alginate hydrogel containing poorly water-soluble aripiprazole (ARP) for achieving free-flowing injectability, clinically accessible gelation time and sustained drug release. The balanced ratio of pyridoxal phosphate (PLP) and glucono-delta-lactone (GDL) was crucial to modulate gelation time of the alginate solution in the presence of calcium carbonate. Our results demonstrated that the sol state alginate hydrogel before gelation was free-flowing, stable and readily injectable using a small 23 G needle.

View Article and Find Full Text PDF

Recombinant antibodies are a promising class of therapeutics to treat protein misfolding associated with neurodegenerative diseases, and several antibodies that inhibit aggregation are approved or in clinical trials to treat Alzheimer's disease. Here, we developed antibodies targeting the aggregation-prone β-propeller olfactomedin (OLF) domain of myocilin, variants of which comprise the strongest genetic link to glaucoma and cause early onset vision loss for several million individuals worldwide. Mutant myocilin aggregates intracellularly in the endoplasmic reticulum (ER).

View Article and Find Full Text PDF

Photocatalytic water splitting holds great potential for transforming solar energy into valuable chemical products. However, obstacles such as the rapid recombination of electron-hole pairs and insufficiently active surface areas of photocatalysts remain significant challenges. In this study, we present the first demonstration that lithium bis(trifluoromethanesulfonyl)imide vapor successfully etches aluminum from NbAlC MAX phase powders while concurrently forming NbOF anchors on NbCT nanosheet (NbCTNS) MXene, leading to the in situ formation of a NbCTNS/NbOF heterostructure composite.

View Article and Find Full Text PDF

D-peptide hydrogels as a long-acting multipurpose drug delivery platform for combined contraception and HIV prevention.

J Control Release

December 2024

School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom. Electronic address:

Article Synopsis
  • New multipurpose prevention technologies for women prioritize reducing HIV risks and preventing unwanted pregnancies, promoting greater sexual health choices.
  • A novel long-acting injectable platform combines the HIV drug MIV-150 and the contraceptive etonogestrel using a specially designed D-peptide that forms a drug-releasing hydrogel after injection.
  • The technology shows promising biostability, low toxicity, and sustained delivery of both drugs in animal models for nearly 50 days, indicating its potential for effective long-term use.
View Article and Find Full Text PDF

Single-crystal high-nickel oxide with an integral structure can prevent intergranular cracks and the associated detrimental reactions. Yet, its low surface-to-volume ratio makes surficial degradation a more critical factor in electrochemical performance. Herein, artificial proton-rich (ammonium bicarbonate) shell is successfully introduced on the nickel-rich LiNiCoMnO single crystals for in situ electrochemically conversing into inorganic maskant to enhance stability of cathode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!