Cilostazol reduces proliferation through c-Myc down-regulation in MDCK cells.

Eur J Pharmacol

Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, DF 07000, México.

Published: August 2009

AI Article Synopsis

Article Abstract

Cilostazol, a drug commonly used in the treatment of intermittent claudication is a selective phosphodiesterase III inhibitor. It affects cell proliferation, increases cAMP levels, activates the cyclic AMP-dependent protein kinase and inhibits E2F in vascular cells. Polycystic kidney disease, a common genetic disorder, is characterized by increased cell proliferation, basement membrane abnormalities and fluid secretion. An established in vitro model of this disease is the canine Madin-Darby cell line (MDCK). In this communication, we investigated the effects of cilostazol exposure in MDCK cells. A reduced cell proliferation rate with an arrest in the G1 phase of the cell cycle was detected. Accordingly, several transcription factors associated with cell cycle control were affected by cilostazol, particularly c-myc. c-Myc DNA binding as well as its transcriptional activity was severely impaired in cilostazol-treated cells. Pharmacological tools demonstrated that besides the involvement of the cyclic AMP-dependent protein kinase, the extracellular signal-regulated kinases I/II participate in the response. These results suggest that cilostazol inhibits cell proliferation through c-myc transcriptional control, also pave the way to our better understanding of molecular transactions triggered by this drug and strengthen its potential use in other malignancies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2009.06.016DOI Listing

Publication Analysis

Top Keywords

cell proliferation
16
proliferation c-myc
8
mdck cells
8
cyclic amp-dependent
8
amp-dependent protein
8
protein kinase
8
cell cycle
8
cell
7
cilostazol
5
proliferation
5

Similar Publications

The mammalian Y chromosome is essential for male fertility, but which Y genes regulate spermatogenesis is unresolved. We addressed this by generating 13 Y-deletant mouse models. In , , and deletants, spermatogenesis was impaired.

View Article and Find Full Text PDF

One of the most obvious manifestations of the negative impact of space flight factors on the human physiology is osteopenia. With the active development of manned space flights and the increase in the duration of humans' persistence in weightlessness, there is a growing need to understand the mechanisms of changes occurring at the cellular level involved in the replenishment of bone tissue. Using the RNA sequencing method, changes in the transcriptome profile of MMSCs were studied after a 5-day simulation of the microgravity effects.

View Article and Find Full Text PDF

Background: The effects of ionizing radiation (IR) involve a highly orchestrated series of events in cells, including DNA damage and repair, cell death, and changes in the level of proliferation associated with the stage of the cell cycle. A large number of existing studies in literature have examined the activity of genes and their regulators in mammalian cells in response to high doses of ionizing radiation. Although there are many studies, the research in effect of low doses of ionizing radiation remains limited.

View Article and Find Full Text PDF

Glioma is a highly aggressive and invasive brain tumor with limited treatment options, highlighting the need for novel therapeutic approaches. Kinesin superfamily proteins (KIFs) are a diverse group of motor proteins that play essential roles in cellular processes such as mitosis, intracellular transport, and signal transduction, all of which are crucial for tumorigenesis. This review focuses on the multifaceted role of KIFs in glioma, examining their clinical relevance, contribution to tumor progression, and potential as therapeutic targets.

View Article and Find Full Text PDF

Modeling Innate Immunity Causing Chronic Inflammation and Tissue Damage.

Bull Math Biol

January 2025

Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.

Mathematical models of immune responses have traditionally focused on adaptive immunity and pathogen-immune dynamics. However, recent advances in immunology have highlighted the critical role of innate immunity. In response to physical damage or pathogen attacks, innate immune cells circulating throughout the body rapidly migrate from blood vessels and accumulate at the site of injury, triggering inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!