Background: Transcription factor HaDREB2 was identified in sunflower (Helianthus annuus L.) as a drought-responsive element-binding factor 2 (DREB2) with unique properties. HaDREB2 and the sunflower Heat Shock Factor A9 (HaHSFA9) co-activated the Hahsp17.6G1 promoter in sunflower embryos. Both factors could be involved in transcriptional co-activation of additional small heat stress protein (sHSP) promoters, and thus contribute to the HaHSFA9-mediated enhancement of longevity and basal thermotolerance of seeds.
Results: We found that overexpression of HaDREB2 in seeds did not enhance longevity. This was deduced from assays of basal thermotolerance and controlled seed-deterioration, which were performed with transgenic tobacco. Furthermore, the constitutive overexpression of HaDREB2 did not increase thermotolerance in seedlings or result in the accumulation of HSPs at normal growth temperatures. In contrast, when HaDREB2 and HaHSFA9 were conjointly overexpressed in seeds, we observed positive effects on seed longevity, beyond those observed with overexpression of HaHSFA9 alone. Such additional effects are accompanied by a subtle enhancement of the accumulation of subsets of sHSPs belonging to the CI and CII cytosolic classes.
Conclusion: Our results reveal the functional interdependency of HaDREB2 and HaHSFA9 in seeds. HaDREB2 differs from other previously characterized DREB2 factors in plants in terms of its unique functional interaction with the seed-specific HaHSFA9 factor. No functional interaction between HaDREB2 and HaHSFA9 was observed when both factors were conjointly overexpressed in vegetative tissues. We therefore suggest that additional, seed-specific factors, or protein modifications, could be required for the functional interaction between HaDREB2 and HaHSFA9.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706249 | PMC |
http://dx.doi.org/10.1186/1471-2229-9-75 | DOI Listing |
Acc Chem Res
January 2025
Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.
A systematic series of QM cluster models has been developed to predict the trend in the carbonic anhydrase binding affinity of a structurally diverse dataset of ligands. Reference DLPNO-CCSD(T)/CBS binding energies were generated for a cluster model and used to evaluate the performance of contemporary density functional theory methods, including Grimme's "3c" DFT composite methods (rSCAN-3c and ωB97X-3c). It is demonstrated that when validated QM methods are used, the predictive power of the cluster models improves systematically with the size of the cluster models.
View Article and Find Full Text PDFBiochem Soc Trans
January 2025
Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-sección Medicina, Universidad de La Laguna, Tenerife, ES-38071, Spain.
Large conductance voltage- and calcium-activated potassium channels (BK channels) are extensively found throughout the central nervous system and play a crucial role in various neuronal functions. These channels are activated by a combination of cell membrane depolarisation and an increase in intracellular calcium concentration, provided by calcium sources located close to BK. In 2001, Isaacson and Murphy first demonstrated the coupling of BK channels with N-methyl-D-aspartate receptors (NMDAR) in olfactory bulb neurons.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, Yolo County, CA, 95616USA.
Juvenile Chinook Salmon (Oncorhynchus tshawytscha) populations have decreased substantially in the Sacramento-San Joaquin Delta (Delta) over the past decades, so considerably that two of the four genetically distinct runs are now listed in the Endangered Species Act. One factor responsible for this decline is the presence of contaminants in the Delta. Insecticides, used globally in agricultural, industrial, and household settings, have the potential to contaminate nearby aquatic systems through spray drift, runoff, and direct wastewater discharge.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
Background: Hepatocellular carcinoma (HCC), the most common form of liver cancer, has a significant mortality rate, largely due to late diagnosis. Recent advances in medical research have demonstrated the potential of biomarkers for early detection. Moreover, the discovery and use of prognostic biomarkers offer a ray of hope in the fight against liver cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!