[Temporal and spatial variations of soil respiration in an Artemisia ordosica shrubland ecosystem in Kubuqi Desert].

Huan Jing Ke Xue

State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.

Published: April 2009

Based on the dynamic measurements of soil respiration using a closed dynamic chamber and its related environmental factors in a desert shrubland ecosystem regularly during the growing season (May-September) of 2006, we studied the diurnal and seasonal variations of soil respiration of two different land cover soils and their responses to soil temperature, soil water content and biotic factors. The objective was to evaluate the temporal and spatial patterns of soil respiration and their responsible factors in Artemisia ordosica shrubland in Kubuqi Desert, Inner Mongolia, China. The diurnal variation of soil respiration showed an asymmetric single-peak pattern, with the peak value occurring around 12:00. Soil respiration fluctuated greatly during the growing season, reaching peak values in July-August. There was a significant linear relationship between soil respiration rate and soil water content at 10 cm depth. Most of the seasonal variation in soil respiration (75%-77%) could be explained by the variation in soil water content. The mean soil respiration under the shrub canopy was (155.58 +/- 15.20) mg x (m2 x h)(-1), which was significantly higher than that for the bare ground between the shrubs (110.50 +/- 6.77) mg x (m2 x h)(-1). The sensitivity of soil respiration to soil water content was also significantly higher for the soils under the canopy than for the bare ground soils. The spatial variation of soil respiration was caused mainly by the root biomass, which can be explained about 43% of heterogeneity. The results suggest that variation on a small time and space scales must be taken into consideration when estimating soil CO2 efflux in the desert ecosystems.

Download full-text PDF

Source

Publication Analysis

Top Keywords

soil respiration
44
soil
17
soil water
16
water content
16
variation soil
16
respiration
11
variations soil
8
artemisia ordosica
8
ordosica shrubland
8
shrubland ecosystem
8

Similar Publications

Responses of soil respiration and its temperature sensitivity to nitrogen and phosphorus depositions in a riparian zone.

J Environ Manage

January 2025

Key Laboratory of Water Environment Evolution and Pollution Control in the Three Gorges Reservoir, Chongqing Three Georges University, Chongqing, 404100, PR China.

Nitrogen and phosphorus depositions and global warming have continuously intensified, impacting soil respiration. However, the response mechanisms of soil respiration rate (R) and its temperature sensitivity (Q) to nitrogen and phosphorus depositions are still unclear, especially for riparian zones. Intact Fluvisols were collected at different water-level elevations (150, 160, 170, and 180 m) of the riparian zone of the Three Gorges Reservoir, China and incubated under 20 and 30 °C with additions of nitrogen (36 kg N ha yr), phosphorus (0.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs), recognized for their unique properties, are widely applied in fields such as agriculture, biotechnology, food security, and medicine. However, concerns persist regarding their interactions with living organisms and potential environmental impacts. This study investigates the effects of AgNPs on key soil microbial indicators that are essential for ecological functioning.

View Article and Find Full Text PDF

Microbial Carbon Use Efficiency and Growth Rates in Soil: Global Patterns and Drivers.

Glob Chang Biol

January 2025

Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Göttingen, Germany.

Carbon use efficiency (CUE) of microbial communities in soil quantifies the proportion of organic carbon (C) taken up by microorganisms that is allocated to growing microbial biomass as well as used for reparation of cell components. This C amount in microbial biomass is subsequently involved in microbial turnover, partly leading to microbial necromass formation, which can be further stabilized in soil. To unravel the underlying regulatory factors and spatial patterns of CUE on a large scale and across biomes (forests, grasslands, croplands), we evaluated 670 individual CUE data obtained by three commonly used approaches: (i) tracing of a substrate C by C (or C) incorporation into microbial biomass and respired CO (hereafter C-substrate), (ii) incorporation of O from water into DNA (O-water), and (iii) stoichiometric modelling based on the activities of enzymes responsible for C and nitrogen (N) cycles.

View Article and Find Full Text PDF

Hibernation is a crucial aspect of the life history of freshwater turtles inhabiting temperate regions. Therefore, understanding their hibernation habitat selection is essential for the targeted conservation of turtle species and their habitats. The Chinese softshell turtle (), a medium-sized freshwater turtle, is widely distributed in China; however, populations are rapidly declining, and threatened by habitat destruction, overfishing, and water pollution.

View Article and Find Full Text PDF

Soil microbial carbon use efficiency differs between mycorrhizal trees: insights from substrate stoichiometry and microbial networks.

ISME Commun

January 2025

Chinese Academy of Sciences, Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.

The role of mycorrhizal associations in controlling forest soil carbon storage remains under debate. This uncertainty is potentially due to an incomplete understanding of their influence on the free-living soil microbiome and its functions. In this study, rhizosphere and non-rhizosphere soils were collected from eight arbuscular mycorrhizal (AM) and seven ectomycorrhizal (ECM) tree species in a temperate forest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!