Arsenic is a redox-active metalloid whose toxicity and mobility strongly depends on its oxidation state, with arsenite (As(III)) being more toxic and mobile than arsenate (As(V)). Humic substances (HS) are also redox-active and can potentially react with arsenic and change its redox state. In this study we show that semiquinone radicals produced during microbial or chemical reduction of a HS model quinone (AQDS, 9,10-anthraquinone-2,6-disulfonic acid) are strong oxidants. They oxidize arsenite to arsenate, thus decreasing As toxicity and mobility. This reaction depends strongly on pH with more arsenite (up to 67.3%) being oxidized at pH 11 compared to pH 7 (12.6% oxidation) and pH 3 (0.5% oxidation). In addition to As(III) oxidation by semiquinone radicals, hydroquinones that were also produced during quinone reduction reduced As(V) to As(III) at neutral and acidic pH values (less than 12%) but not at alkaline pH. In order to understand redox reactions between arsenite/arsenate and reduced/oxidized HS, we quantified the radical content in reduced quinone solutions and constructed Eh-pH diagrams that explain the observed redox reactions. The results from this study can be used to better predict the fate of arsenic in the environment and potentially explain the occurrence of oxidized As(V) in anoxic environments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es803112aDOI Listing

Publication Analysis

Top Keywords

semiquinone radicals
12
radicals hydroquinones
8
model quinone
8
toxicity mobility
8
redox reactions
8
arsenic
4
arsenic redox
4
redox changes
4
changes microbially
4
microbially chemically
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!