Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A mini-multileaf collimator (MMLC) was mounted as a field shaping collimator in a proton beamline at the Massachusetts General Hospital. The purpose is to evaluate the device's dosimetric and mechanical properties for the use in a proton beamline. For this evaluation, the authors compared MMLC and brass aperture shaped dose distributions with regard to lateral and depth dose properties. The lateral fall off is generally broader with the MMLC, with difference varying with proton range from 0.2 to 1.2 mm. Central axis depth dose curves did not show a difference in peak-to-entrance ratio, peak width, distal fall off, or range. Two-dimensional dose distributions to investigate the conformity of MMLC shaped doses show that the physical leaf width of approximately 2.5 mm does not have a significant impact. All differences seen in dose distribution shaped by the MMLC versus brass apertures were shown to be clinically insignificant. Measured neutron doses of 0.03-0.13 mSv/Gy for a closed brass beam block (depending on range) are very low compared to the previously published data. Irradiation of the tungsten MMLC, however, produced 1.5-1.8 times more neutrons than brass apertures. Exposure of the staff resulting from activation of the device is below regulatory limits. The measurements established an equivalency between aperture and MMLC shaped dose distributions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1118/1.3116382 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!