An easily applicable empirical formula was derived for use in the assessment of the photoneutron dose at the maze entrance of a 15 MV medical accelerator treatment room. The neutron dose equivalent rates around the Varian medical accelerator head calculated with the Monte Carlo code MCNPX were used as the source term in producing the base data. The dose equivalents were validated by measurements with bubble detectors. Irradiation geometry conditions expected to yield higher neutron dose rates in the maze were selected: a 20 x 20 cm2 irradiation field, gantry rotation plane parallel to the maze walls, and the photon beams directed to the opposite wall to the maze entrance. The neutron dose equivalents at the maze entrance were computed for 697 arbitrary single-bend maze configurations by extending the Monte Carlo calculations down to the maze entrance. Then, the empirical formula was derived by a multiple regression fit to the neutron dose equivalents at the maze entrance for all the different maze configurations. The goodness of the empirical formula was evaluated by applying it to seven operating medical accelerators of different makes. When the source terms were fixed, the neutron doses estimated from the authors' formula agreed better with the corresponding MCNPX simulations than the results of the Kersey method. In addition, compared with the Wu-McGinley formula, the authors' formula provided better estimates for the mazes with length longer than 8.5 m. There are, however, discrepancies between the measured dose rates and the estimated values from the authors' formula, particularly for the machines other than a Varian model. Further efforts are needed to characterize the neutron field at the maze entrance to reduce the discrepancies. Furthermore, neutron source terms for the machines other than a Varian model should be simulated or measured and incorporated into the formula for accurate extended application to a variety of models.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.3096417DOI Listing

Publication Analysis

Top Keywords

maze entrance
28
neutron dose
20
empirical formula
16
medical accelerator
12
dose equivalents
12
authors' formula
12
maze
11
neutron
8
dose
8
entrance medical
8

Similar Publications

Effort-based decision-making is particularly relevant to psychiatric conditions where motivation deficits are prominent features. Despite its clinical significance, the neurochemical mechanisms of this cognitive process remain unclarified. This study explores the impact of serotonin synthesis inhibition (PCPA) and modulation of serotonin release and 5-HT1A receptor agonism (8-OH-DPAT) on effort-based decision-making in rats.

View Article and Find Full Text PDF

Animals navigate by learning the spatial layout of their environment. We investigated spatial learning of mice in an open maze where food was hidden in one of a hundred holes. Mice leaving from a stable entrance learned to efficiently navigate to the food without the need for landmarks.

View Article and Find Full Text PDF

Background: An ultra-high dose rate (UHDR) electron accelerator for FLASH radiotherapy (RT) produces very intense bremsstrahlung by the interaction of the electron beam with objects both inside and outside of the accelerator. The bremsstrahlung dose per pulse is typically 1-2 orders of magnitude larger than that of conventional RT x-ray treatment of the same energy, and for electron energies above 10 MeV, the bremsstrahlung produces substantially more induced radioactivity outside the accelerator than for conventional RT. Therefore, a thorough radiation safety assessment is mandatory prior to the operation of a UHDR electron accelerator.

View Article and Find Full Text PDF

Occupational radiation protection should be applied to the design of treatment rooms for various radiation therapy techniques, including BNCT, where escaping particles from the beam port of the beam shaping assembly (BSA) may reach the walls or penetrate through the entrance door. The focus of the present study is to design an alternative shielding material, other than the conventional material of lead, that can be considered as the material used in the door and be able to effectively absorb the BSA neutrons which have slowed down to the thermal energy range of eV after passing through the walls and the maze of the room. To this aim, a thermal neutron shield, composed of polymer composite and polyethylene, has been simulated using the Geant4 Monte Carlo code.

View Article and Find Full Text PDF

Inflammation and oxidative stress upset memory. We explored influence of sodium nitroprusside (SNP) on memory deficits resulted from lipopolysaccharide (LPS).Groups include control, LPS, LPS + SNP 1 mg/kg, LPS + SNP 2 mg/kg, and LPS + SNP 3 mg/kg.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!