Many extracellular stimuli regulate growth, survival, and differentiation responses through activation of the dual specificity mitogen activated protein kinase (MAPK) kinase three (MKK3) and its downstream effector p38 MAPK. Using CD34+ hematopoietic progenitor cells, here we describe a novel role for MKK3-p38MAPK in the regulation of myelopoiesis. Inhibition of p38MAPK utilizing the pharmacological inhibitor SB203580, enhanced neutrophil development ex vivo, but conversely reduced eosinophil differentiation. In contrast, constitutive activation of MKK3 dramatically inhibited neutrophil differentiation. Transplantation of beta2-microglobulin(-/-) nonobese diabetic/severe combined immune deficient (NOD/SCID) mice with CD34+ cells ectopically expressing constitutively active MKK3 resulted in reduced neutrophil differentiation in vivo, whereas eosinophil development was enhanced. Inhibitory phosphorylation of CCAAT/enhancer binding protein alpha (C/EBPalpha) on serine 21 was induced upon activation of p38MAPK. Moreover, ectopic expression of a non-phosphorylatable C/EBPalpha mutant was sufficient to abrogate MKK3-induced inhibition of neutrophil development. Furthermore, treatment of CD34+ progenitors from patients with severe congenital neutropenia with SB203580 restored neutrophil development. These results establish a novel role for MKK3-p38MAPK in the regulation of lineage choices during myelopoiesis through modulation of C/EBPalpha activity. This signaling module may thus provide an important therapeutic target in the treatment of bone marrow failure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/stem.152 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!