Strong sorption of hydrophobic organic contaminants to soot or black carbon (BC) is an important environmental process limiting the bioremediation potential of contaminated soils and sediments. Reliable methods to predict BC sorption coefficients for organic contaminants are therefore required. A computer simulation based on molecular mechanics using force field methods has been applied in this study to calculate BC sorption coefficients of polycyclic aromatic hydrocarbons (PAHs). The free energy difference between PAHs dissolved in water and in water containing a model structure of BC was calculated by thermodynamic integration of Monte Carlo simulated energies of transfer. The free energies were calculated with a hypothetical reference state that has equal free energies in both phases and is therefore cancelled in the calculated free energy difference. The calculated sorption coefficient of phenanthrene (log K(BC) = 5.17 +/- 0.54 L/kg C), fluoranthene (6.33 +/- 0.64 L/kg C) and benzo[a]pyrene (7.38 +/- 0.36 L/kg C) corresponded very well to experimental values available in the literature. Furthermore, an average spacing distance of 3.73 A between PAHs and BC was determined that is only slightly lower than an experimentally determined value of 4.1 A. The method applied in this study enables the calculation of the extent of PAH sorption to a soot surface for which no experimental values are available nor data for related compounds as required in quantitative structure-activity relationships.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10629360902949336 | DOI Listing |
Water Sci Technol
January 2025
Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
This work focused on the biotreatment of wastewater and contaminated soil in a used oil recycling plant located in Bizerte. A continuous stirred tank reactor (CSTR) and a trickling filter (TF) were used to treat stripped and collected wastewater, respectively. The CSTR was started up and stabilized for 90 days.
View Article and Find Full Text PDFInorg Chem
January 2025
GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain.
The development of multitopic hosts for fullerene recognition based on nonplanar corannulene (CH) structures presents challenges, primarily due to the requirement for synergistic interactions with multiple units of this polycyclic aromatic hydrocarbon. Moreover, increasing the number of corannulene groups in a single chemical structure while avoiding the cost of increasing flexibility has been scarcely explored. Herein, we report the synthesis of a family of multitopic Ru(II)-polypyridyl complexes bearing up to six units of corannulene arranged by pairs, offering a total of three molecular tweezers.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Chemistry & Chemical Biology, McMaster University, Hamilton L8S 4L8, Canada.
Wildfires emit large amounts of polycyclic aromatic hydrocarbons (PAHs) into the atmosphere. As PAHs emitted from anthropogenic sources are known to accumulate in urban surface grime present on building exteriors and windows, we hypothesized that PAH-containing wildfire smoke plumes could similarly increase PAH grime loadings. To explore this hypothesis, we coupled analysis of PAHs in grime samples collected from August to November 2021 in two historically smoke-affected Canadian cities, Calgary and Kamloops, with contemporaneous field- and model-based indicators of wildfire influence.
View Article and Find Full Text PDFEnviron Pollut
January 2025
The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK; Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China. Electronic address:
This work is the first comprehensive survey of the Yangtze River, covering its origin to the estuary mouth. It focuses on the geographical and industrial factors influencing the distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments, along with their contamination levels, sources, and ecological risks. The total concentrations of PAHs ranged from 2.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
The toxic fume emitted from asphalt pavement remains a health and environmental hazard towards public safety, especially the emission of volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). Despite extensive studies focused on characterizing asphalt fumes generated during construction stages (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!