Activated PKCalpha/ERK1/2 signaling inhibits tamoxifen-induced apoptosis in C6 cells.

Cancer Invest

Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.

Published: August 2009

Data have shown that tamoxifen (TAM) can be used to treat not only breast cancer with positive estrogen receptor (ER), but also negative ER including human glioma. However, the molecular mechanism of this drug against different kinds of cancers remains to be elucidated. In this study, we provided the evidence that PKCalpha-ERK1/2 signaling pathway plays a negative role in TAM-induced C6 cell apoptosis, and a combined utilization of TAM with inhibitors of PKCalpha or ERK1/2 could enhance the effectiveness of TAM on inhibiting tumor growth.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07357900802672720DOI Listing

Publication Analysis

Top Keywords

activated pkcalpha/erk1/2
4
pkcalpha/erk1/2 signaling
4
signaling inhibits
4
inhibits tamoxifen-induced
4
tamoxifen-induced apoptosis
4
apoptosis cells
4
cells data
4
data tamoxifen
4
tamoxifen tam
4
tam treat
4

Similar Publications

Titanium dioxide (TiO) nanotubes can improve the osseointegration of pure titanium implants, but this exact mechanism has not been fully elucidated. The purinergic receptor P2Y6 is expressed in bone marrow mesenchymal stem cells (BMSCs) and participates in the regulation of bone metabolism. However, it is unclear as to whether P2Y6 is involved in the osteogenic differentiation of BMSCs induced by TiO nanotubes.

View Article and Find Full Text PDF

Background: Piperine is a type of amide alkaloid that exhibits pleiotropic properties like antioxidant, anticancer, anti-inflammatory, antihypertensive, hepatoprotective, neuroprotective and enhancing bioavailability and fertility-related activities. Piperine has the ability to alter gastrointestinal disorders, drug-metabolizing enzymes, and bioavailability of several drugs. The present review explores the available clinical and preclinical data, nanoformulations, extraction process, structure-activity relationships, molecular docking, bioavailability enhancement of phytochemicals and drugs, and brain penetration properties of piperine in the prevention, management, and treatment of various diseases and disorders.

View Article and Find Full Text PDF

Mitotic checkpoint kinase Mps1/TTK predicts prognosis of colon cancer patients and regulates tumor proliferation and differentiation via PKCα/ERK1/2 and PI3K/Akt pathway.

Med Oncol

November 2019

Department of Central Laboratory and Huai'an Key Laboratory of Esophageal Cancer Biobank, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China.

Mps1/TTK plays an important role in development of many tumors. The purpose of the present study was designed to investigate the role of TTK in colon cancer. We analyzed TTK and colon cancer in the GEO database, colon cancer tissues and normal tissues were collected to verify the results by immunohistochemistry.

View Article and Find Full Text PDF

Neonatal exposure to propofol induces persistent behavioral abnormalities in adulthood. In addition to triggering the apoptosis of neurons in the developing brain, anesthetics may contribute to the development of cognitive deficits by interfering neurogenesis. Given the importance of neural stem cell (NSC) proliferation in neurogenesis, the effect of propofol on NSC proliferation and the mechanisms underlying this effect were investigated.

View Article and Find Full Text PDF

The main dietary flavonoid quercetin, is known to preserve the integrity of gastrointestinal barrier and to have anti-inflammatory, anti-cancer, anti-fibrotic, and other beneficial properties. Many of the biological effects of quercetin appear to be associated to the modulation of cell signaling pathways, rather than to its antioxidant activity. In spite of the large number of data available on the molecular and cellular mechanisms by which quercetin exerts its biological effects, including protection of intestinal barrier function, there is a lack of data about the role of this substance on the expression and/or the secretion of mucins released by intestinal goblet cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!