Effect of glucosamine or chondroitin sulfate on the osteoarthritis progression: a meta-analysis.

Rheumatol Int

Division of Rheumatology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 126-1 ga, Anam-dong, Seongbuk-gu, Seoul 136-705, Korea.

Published: January 2010

The aim of this study was to assess the structural efficacies of daily glucosamine sulfate and chondroitin sulfate in patients with knee osteoarthritis (OA). The authors surveyed randomized controlled studies that examined the effects of long-term daily glucosamine sulfate and chondroitin sulfate on joint space narrowing (JSN) in knee OA patients using the Medline and the Cochrane Controlled Trials Register, and by performing manual searches. Meta-analysis was performed using a fixed effect model because no between-study heterogeneity was evident. Six studies involving 1,502 cases were included in this meta-analysis, which consisted of two studies on glucosamine sulfate and four studies on chondroitin sulfate. Glucosamine sulfate did not show a significant effect versus controls on minimum JSN over the first year of treatment (SMD 0.078, 95% CI -0.116 to -0.273, P = 0.429). However, after 3 years of treatment, glucosamine sulfate revealed a small to moderate protective effect on minimum JSN (SMD 0.432, 95% CI 0.235-0.628, P < 0.001). The same was observed for chondroitin sulfate, which had a small but significant protective effect on minimum JSN after 2 years (SMD 0.261, 95% CI 0.131-0.392, P < 0.001). This meta-analysis of available data shows that glucosamine and chondroitin sulfate may delay radiological progression of OA of the knee after daily administration for over 2 or 3 years.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00296-009-0969-5DOI Listing

Publication Analysis

Top Keywords

chondroitin sulfate
24
glucosamine sulfate
20
minimum jsn
12
sulfate
11
glucosamine chondroitin
8
daily glucosamine
8
sulfate chondroitin
8
protective minimum
8
glucosamine
7
chondroitin
5

Similar Publications

Purpose: To evaluate whether cumulative impact load and serum biomarkers are related to lower-extremity injury and to determine any impact load and cartilage biomarker relationships in collegiate female basketball athletes.

Methods: This was a prospective longitudinal study evaluating lower-extremity impact load, serum cartilage biomarkers, and injury incidence over the course of a single collegiate women's basketball season. Data were collected from August 2022 to April 2023; no other follow-up after the cessation of the season was conducted in this cohort.

View Article and Find Full Text PDF

CHONDROITIN SULFATE AND GLUCOSAMINE SULFATE AS PROTECTIVE AND ANTI-INFLAMMATORY AGENTS IN THE ULCERATIVE COLITIS DSS MODEL IN RATS.

Arq Gastroenterol

December 2024

Instituto de Ciências Biológicas da Universidade Federal de Juiz de Fora, Laboratório de Análises de Glicoconjugados, Departamento de Bioquímica, Juiz de Fora, MG, Brasil.

Chondroitin sulfate (CS) and glucosamine (GlcN) are indicated for the treatment of some inflammatory diseases, such as osteoarthritis, mainly because of the anti-inflammatory effects in reducing metalloproteinases activities (MMP), and other inflammatory mediators. Herein, we reported the structure of the CS, the anti-inflammatory and protective effects of the CS, and GlcN administration in ulcerative colitis model induced by dextran sulfate sodium (DSS) in rats. Experimental data indicated that CS disaccharide composition is very similar to the C4S standard, with modal molecular weight at 30.

View Article and Find Full Text PDF

Background: Spinal cord injury (SCI) can impair motor, sensory, and autonomic function. The formation of the glial scar comprises protective as well as inhibitory neurite outgrowth properties operated by the deposition of chondroitin sulfate proteoglycans (CSPG). Chondroitinase ABC (ChABC) can degrade CSPG and foster neuroaxonal plasticity as a therapeutic approach to restore locomotor function after SCI.

View Article and Find Full Text PDF

Serum CS/DS, IGF-1, and IGFBP-3 as Biomarkers of Cartilage Remodeling in Juvenile Idiopathic Arthritis: Diagnostic and Therapeutic Implications.

Biomolecules

November 2024

Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, ul. Jedności 8, 41-200 Sosnowiec, Poland.

Cartilage destruction in juvenile idiopathic arthritis (JIA) is diagnosed, often too late, on basis of clinical evaluation and radiographic imaging. This case-control study investigated serum chondroitin/dermatan sulfate (CS/DS) as a potential biochemical marker of cartilage metabolism, aiming to improve early diagnosis and precision treatment for JIA. We also measured the levels of insulin-like growth factor-1 (IGF-1) and insulin-like growth factor-binding protein-3 (IGFBP-3) (using ELISA methods) in JIA patients ( = 55) both before and after treatment (prednisone, sulfasalazine, methotrexate, administered together), and analyzed their relationships with CS/DS levels.

View Article and Find Full Text PDF

Therapies against hematological malignancies using chimeric antigen receptors (CAR)-T cells have shown great potential; however, therapeutic success in solid tumors has been constrained due to limited tumor trafficking and infiltration, as well as the scarcity of cancer-specific solid tumor antigens. Therefore, the enrichment of tumor-antigen specific CAR-T cells in the desired region is critical for improving therapy efficacy and reducing systemic on-target/off-tumor side effects. Here, we functionalized human CAR-T cells with superparamagnetic iron oxide nanoparticles (SPIONs), making them magnetically controllable for site-directed targeting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!