Cyanobacteria that grow above seawater salinity at temperatures above 45 degrees C have rarely been studied. Cyanobacteria of this type of thermo-halophilic extremophile were isolated from siliceous crusts at 40-45 degrees C in a geothermal seawater lagoon in southwest Iceland. Iceland Clone 2e, a Leptolyngbya morphotype, was selected for further study. This culture grew only at 45-50 degrees C, in medium ranging from 28 to 94 g L(-1) TDS, It showed 3 doublings 24 h(-1) under continuous illumination. This rate at 54 degrees C was somewhat reduced, and death occurred at 58 degrees C. A comparison of the 16S rDNA sequence with all others in the NCBI database revealed 2 related Leptolyngbya isolates from a Greenland hot spring (13-16 g L(-1) TDS). Three other similar sequences were from Leptolyngbya isolates from dry, endolithic habitats in Yellowstone National Park. All 6 formed a phylogenetic clade, suggesting common ancestry. These strains shared many similarities to Iceland Clone 2e with respect to temperature and salinity ranges and optima. Two endolithic Leptolyngbya isolates, grown previously at 23 degrees C in freshwater medium, grew well at 50 degrees C but only in saline medium. This study shows that limited genotypic similarity may reveal some salient phenotypic similarities, even when the related cyanobacteria are from vastly different and remote habitats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00792-009-0258-y | DOI Listing |
Microbiol Resour Announc
December 2024
Department of Evolutionary and Environmental Biology and The Institute of Evolution, University of Haifa, Haifa, Israel.
Leptolyngbya phage Dor1 was induced by mitomycin C from a fishpond and was isolated on IU 594. The 41,522-bp genome of Leptolyngbya phage Dor1 has 93.77% intergenomic similarity with Leptolyngbya phage LPP-1; however, unlike LPP-1, Dor1 carries an HNH endonuclease in its DNA polymerase gene.
View Article and Find Full Text PDFJ Phycol
December 2024
School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, China.
Chlorophyll (Chl) f was reported as the fifth Chl in oxygenic photoautotrophs. Chlorophyll f production expanded the utilization of photosynthetically active radiation into the far-red light (FR) region in some cyanobacterial genera. In this study, 11 filamentous cyanobacterial strains were isolated from FR-enriched habitats, including hydrophyte, moss, shady stone, shallow ditch, and microbial mat across Central and Southern China.
View Article and Find Full Text PDFFEMS Microbiol Ecol
November 2024
BVBGR-LR11ES31, ISBST, Biotechpole Sidi Thabet, Univ. Manouba, Ariana 2020, Tunisia.
Thermal springs harbour microorganisms, often dominated by cyanobacteria, which form biofilms and microbial mats. These phototrophic organisms release organic exudates into their immediate surroundings, attracting heterotrophic bacteria that contribute to the diversity and functioning of these ecosystems. In this study, the microbial mats from a hydrothermal pool in the Ksar Ghilane oasis in the Grand Erg Oriental of the Desert Tunisia were collected to obtain cyanobacterial cultures formed by single cyanobacterial species.
View Article and Find Full Text PDFJ Oleo Sci
October 2024
Institute of Microbiology and Molecular Genetics, University of the Punjab.
Depleting fossil fuel resources and increasing energy demand have intensified the emphasis on biofuel production cyanobacteria. In this study, 19 cyanobacterial filamentous strains were isolated from various regions of Pakistan, including the northern areas and the University of the Punjab, Lahore. Sudan black, Nile red, and BODIPY staining, together with CLSM, fluorimetry, FTIR, growth in different nitrate concentrations, and GC techniques, were used to confirm and measure the lipid and diesel contents within isolated cyanobacterial filaments.
View Article and Find Full Text PDFbioRxiv
August 2024
Department of BioMolecular Science, School of Pharmacy, University of Mississippi, University, Mississippi, 38677, United States of America.
Extracting DNA from cyanobacteria can be a challenge because of their diverse morphologies, challenging cellular structure, and the heterotrophic microbiome often present within cyanobacterial cultures. As such, even when our DNA yields are sufficient for sequencing, the percentage of reads coming from the cyanobacterial host can be low, leading to incomplete genomes spread across several scaffolds. In this research, we optimized a DNA isolation protocol using three iterative cell lysis steps to enrich the portion of DNA isolated coming from the cyanobacterial host rather than the heterotrophic microbiome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!