Retrievals of atmospheric carbon dioxide (CO2) from space-borne measurements of backscattered near-infrared sunlight are hampered by aerosol and cirrus cloud scattering effects. We propose a retrieval approach that allows for the retrieval of a few effective aerosol parameters simultaneously with the CO2 total column by parameterizing particle amount, height distribution, and microphysical properties. Two implementations of the proposed method covering different spectral bands are tested for an ensemble of simulated nadir observations for aerosol (and cirrus) loaded scenes over low- and mid-latitudinal land surfaces. The residual aerosol-induced CO(2) errors are mostly below 1% up to aerosol optical thickness 0.5. The proposed methods also perform convincing for scenes where cirrus clouds of optical thickness 0.1 overlay the aerosol.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.48.003322DOI Listing

Publication Analysis

Top Keywords

retrievals atmospheric
8
space-borne measurements
8
measurements backscattered
8
backscattered near-infrared
8
near-infrared sunlight
8
aerosol cirrus
8
optical thickness
8
aerosol
6
co2
4
atmospheric co2
4

Similar Publications

Interpreting heavy metal variations in sedimentary records is an important approach to understand historical pollution. However, few studies have investigated the reliability of different heavy metals in sedimentary records for reconstructing historical pollution. This study retrieved two adjacent lakes' sediment cores from a remote area in North China and investigated their temporal changes in excessive metal fluxes.

View Article and Find Full Text PDF

Satellites frequently encounter atmospheric haze during imaging, leading to the loss of detailed information in remote sensing images and significantly compromising image quality. This detailed information is crucial for applications such as Earth observation and environmental monitoring. In response to the above issues, this paper proposes an end-to-end multi-scale adaptive feature extraction method for remote sensing image dehazing (MSD-Net).

View Article and Find Full Text PDF

Excessive total suspended matter (TSM) concentrations can exert a considerable impact on the growth of aquatic organisms in fishponds, representing a significant risk to aquaculture health. This study revised existing unified models using empirical data to develop an optimized TSM retrieval model tailored for the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) (R = 0.69, RMSE = 7.

View Article and Find Full Text PDF

We evaluate global microplastics particle density distribution using field data from 1972 to 2022, made available by the NOAA (National Oceanic and Atmospheric Administration) NCEI (National Centers for Environmental Information) global marine microplastics database. We resampled the measured microplastics density data from NOAA NCEI into a regularly spaced 1° × 1° grid and applied ordinary block kriging on a 1° × 1° mask map of the global oceans to spatially interpolate the gridded data. Climate data were retrieved from the Climate Data Store of the Copernicus Climate Change Service.

View Article and Find Full Text PDF

Mountain apricot () is an important fruit tree variety, and has a wide range of planting and application value in China and even the world. However, the current research on the suitable distribution area of is still inconclusive. In this study, we retrieved distribution data for in China from the Global Biodiversity Information Facility (GBIF), and identified six key environmental factors influencing its distribution through cluster analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!