Objectives: To develop tools offering definite orientation for managers and employees to support their work improvement through occupational mental health. This research was a part of the Mental Health Improvement & Reinforcement Study (MIR study), conducted from October 2004 to March 2006.

Methods: We developed a trial version named the Kaizen Check List (KCL) by referring to problem solving methods for quality management. Then we improved it for a formal version named MIR Research of Recognition (MIRROR). A feedback form named MIR Action Guidance (MIRAGe) was also developed. We analyzed data from 1,953 respondents at five manufacturing enterprises in Japan using MIRROR and the Brief Job Stress Questionnaire (BJSQ) to determine whether or not the workers requesting work improvement had more stress than other workers.

Results: The KCL had 47 items, which indicated desirable working conditions for mental health at work, and four answer categories. MIRROR has 45 selected items and improved answer categories. MIRAGe displays the results of MIRROR and step-by-step guidance for work improvement. Respondents with request had significantly higher scores in stressor and lower scores in buffer factors compared with respondents without request in many items of MIRROR.

Conclusions: A combinational use of MIRROR and stress scales is useful for finding worksites with high risk factors for mental health and for directing focus on work improvement at these worksites according to workers' requests.

Download full-text PDF

Source
http://dx.doi.org/10.1539/joh.l8081DOI Listing

Publication Analysis

Top Keywords

work improvement
20
mental health
20
occupational mental
8
version named
8
named mir
8
answer categories
8
respondents request
8
improvement
6
mental
5
health
5

Similar Publications

Economic impact of reduced postoperative visits after inflatable penile prosthesis implantation.

J Comp Eff Res

January 2025

Boston Scientific Corporation; 100 Boston Scientific Way, Marlborough, MA, USA.

This study assessed the economic impact of reducing one postoperative visit following inflatable penile prosthesis (IPP) implantation. Scenario analyses were used to model the effects of eliminating one 30-min IPP postoperative visit from the expected 2.5 visits accounted for by the American Medical Association resource-based relative value scale data.

View Article and Find Full Text PDF

Polymer-based photosensitizers have found various applications in photodynamic therapy (PDT). However, the absence of targeting ability commonly results in a substantial reduction in photosensitizer accumulation at the tumor site, significantly limiting the therapeutic efficacy of the system. In addition, the development of biodegradable polymeric photosensitizers is of critical importance for biological applications.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) electrosynthesis via the 2e oxygen reduction reaction (ORR) is considered as a cost-effective and safe alternative to the energy-intensive anthraquinone process. However, in more practical environments, namely, the use of neutral media and air-fed cathode environments, slow ORR kinetics and insufficient oxygen supply pose significant challenges to efficient HO production at high current densities. In this work, mesoporous B-doped carbons with novel curved BC active sites, synthesized via a carbon dioxide (CO) reduction using a pore-former agent, to simultaneously achieve excellent 2e ORR activity and improved mass transfer properties are introduced.

View Article and Find Full Text PDF

Carbazole-derived self-assembled monolayers (SAMs) are promising materials for hole-extraction layer (HEL) in conventional organic photovoltaics (OPVs). Here, a SAM Cbz-2Ph derived from 3,6-diphenylcarbazole is demonstrated. The large molecular dipole moment of Cbz-2Ph allows the modulation of electrode work function to facilitate hole extraction and maximize photovoltage, thus improving the OPV performance.

View Article and Find Full Text PDF

The photocatalytic reduction of CO in water to produce fuels and chemicals is promising while challenging. However, many photocatalysts for accomplishing such challenging task usually suffer from unspecific catalytic active sites and the inefficient charge carrier's separation. Here, a site-specific single-atom Ni/TiO catalyst is reported by in situ topological transformation of Ni-Ti-EG bimetallic metal-organic frameworks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!