Macrophages, cytokines, and matrix metalloproteinases (MMP) play important roles in atherogenesis. The Ca(2+)-binding protein S100A12 regulates monocyte migration and may contribute to atherosclerosis by inducing proinflammatory cytokines in macrophages. We found significantly higher S100A12 levels in sera from patients with coronary artery disease than controls and levels correlated positively with C-reactive protein. S100A12 was released into the coronary circulation from ruptured plaque in acute coronary syndrome, and after mechanical disruption by percutaneous coronary intervention in stable coronary artery disease. In contrast to earlier studies, S100A12 did not stimulate proinflammatory cytokine production by human monocytes or macrophages. Similarly, no induction of MMP genes was found in macrophages stimulated with S100A12. Because S100A12 binds Zn(2+), we studied some functional aspects that could modulate atherogenesis. S100A12 formed a hexamer in the presence of Zn(2+); a novel Ab was generated that specifically recognized this complex. By chelating Zn(2+), S100A12 significantly inhibited MMP-2, MMP-9, and MMP-3, and the Zn(2+)-induced S100A12 complex colocalized with these in foam cells in human atheroma. S100A12 may represent a new marker of this disease and may protect advanced atherosclerotic lesions from rupture by inhibiting excessive MMP-2 and MMP-9 activities by sequestering Zn(2+).

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.0900373DOI Listing

Publication Analysis

Top Keywords

s100a12
11
protein s100a12
8
coronary artery
8
artery disease
8
mmp-2 mmp-9
8
coronary
6
pleiotropic roles
4
roles s100a12
4
s100a12 coronary
4
coronary atherosclerotic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!