The elucidation of the structure of Thermotoga maritima peptidoglycan reveals two novel types of cross-link.

J Biol Chem

Laboratoire des Enveloppes Bactériennes et Antibiotiques, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud, 91405 Orsay; CNRS, UMR 8619, 91405 Orsay.

Published: August 2009

Thermotoga maritima is a Gram-negative, hyperthermophilic bacterium whose peptidoglycan contains comparable amounts of L- and D-lysine. We have determined the fine structure of this cell-wall polymer. The muropeptides resulting from the digestion of peptidoglycan by mutanolysin were separated by high-performance liquid chromatography and identified by amino acid analysis after acid hydrolysis, dinitrophenylation, enzymatic determination of the configuration of the chiral amino acids, and mass spectrometry. The high-performance liquid chromatography profile contained four main peaks, two monomers, and two dimers, plus a few minor peaks corresponding to anhydro forms. The first monomer was the d-lysine-containing disaccharide-tripeptide in which the D-Glu-D-Lys bond had the unusual gamma-->epsilon arrangement (GlcNAc-MurNAc-L-Ala-gamma-D-Glu-epsilon-D-Lys). The second monomer was the conventional disaccharide-tetrapeptide (GlcNAc-MurNAc-L-Ala-gamma-D-Glu-L-Lys-D-Ala). The first dimer contained a disaccharide-L-Ala as the acyl donor cross-linked to the alpha-amine of D-Lys in a tripeptide acceptor stem with the sequence of the first monomer. In the second dimer, donor and acceptor stems with the sequences of the second and first monomers, respectively, were connected by a D-Ala4-alpha-D-Lys3 cross-link. The cross-linking index was 10 with an average chain length of 30 disaccharide units. The structure of the peptidoglycan of T. maritima revealed for the first time the key role of D-Lys in peptidoglycan synthesis, both as a surrogate of L-Lys or meso-diaminopimelic acid at the third position of peptide stems and in the formation of novel cross-links of the L-Ala1(alpha-->alpha)D-Lys3 and D-Ala4(alpha-->alpha)D-Lys3 types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755910PMC
http://dx.doi.org/10.1074/jbc.M109.034363DOI Listing

Publication Analysis

Top Keywords

thermotoga maritima
8
high-performance liquid
8
liquid chromatography
8
peptidoglycan
5
elucidation structure
4
structure thermotoga
4
maritima peptidoglycan
4
peptidoglycan reveals
4
reveals novel
4
novel types
4

Similar Publications

Background: Thermotoga maritima is an anaerobic hyperthermophilic eubacterium isolated from geothermally heated maritime surfaces. It can grow at temperatures up to 80 degrees Celsius.

Methods: A 2.

View Article and Find Full Text PDF

Antibodies and antibody mimics are extensively used in the pharmaceutical industry, where stringent safety standards are required. Implementing heat sterilization during or after the manufacturing process could help prevent contamination by viruses and bacteria. However, conventional antibodies and antibody mimics are not suitable for heat sterilization because they irreversibly denature at high temperatures.

View Article and Find Full Text PDF

Glucose isomerase is generally used in the industrial production of high-fructose corn syrup, and a heat- and acid-resistant glucose isomerase is preferred. However, most glucose isomerases exhibit low activity or inactivation at low pH. In this study, we demonstrated that two combination mutants formed by introducing positive and negative charges near the active site and on the surface of the enzyme demonstrated a successful reduction in the optimal pH and increase in the specific activity of glucose isomerase from Thermotoga maritima (TMGI).

View Article and Find Full Text PDF

Biomimetic nicotinamide coenzymes, including nicotinamide mononucleotide (NMN), have been demonstrated as promising low-cost alternatives to nicotinamide adenine dinucleotide (phosphate) (NAD(P)) in biocatalysis. Herein, to efficiently regenerate NMNH from NMN in vitro powered by biomass sugars, a thermophilic NADP-dependent glucose 6-phosphate dehydrogenase from Thermotoga maritima (TmG6PDH) was engineered to increase the activity toward NMN. The catalytic efficiency (k/K) of optimal mutant (TmG6PDH-R7) toward NMN increased by 71.

View Article and Find Full Text PDF

Evaluation of expanded 2-aminobenzothiazole library as inhibitors of a model histidine kinase and virulence suppressors in Pseudomonas aeruginosa.

Bioorg Chem

December 2024

Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, United States; Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55454, United States; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, United States. Electronic address:

Bacterial resistance to antibiotics is a rapidly increasing threat to human health. New strategies to combat resistant organisms are desperately needed. One potential avenue is targeting two-component systems, which are the main bacterial signal transduction pathways used to regulate development, metabolism, virulence, and antibiotic resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!