Arthrogryposis multiplex congenita (AMC) is a group of disorders characterized by congenital joint contractures caused by reduced fetal movements. AMC has an incidence of 1 in 3000 newborns and is genetically heterogeneous. We describe an autosomal recessive form of myogenic AMC in a large consanguineous family. The disease is characterized by bilateral clubfoot, decreased fetal movements, delay in motor milestones, then progressive motor decline after the first decade. Genome-wide linkage analysis revealed a single locus on chromosome 6q25 with Z(max) = 3.55 at theta = 0.0 and homozygosity of the polymorphic markers at this locus in patients. Homozygous A to G nucleotide substitution of the conserved AG splice acceptor site at the junction of intron 136 and exon 137 of the SYNE-1 gene was found in patients. This mutation results in an aberrant retention of intron 136 of SYNE-1 RNA leading to premature stop codons and the lack of the C-terminal transmembrane domain KASH of nesprin-1, the SYNE-1 gene product. Mice lacking the KASH domain of nesprin-1 display a myopathic phenotype similar to that observed in patients. Altogether, these data strongly suggest that the splice site mutation of SYNE-1 gene found in the family is responsible for AMC. Recent reports have shown that mutations of the SYNE-1 gene might be responsible for autosomal recessive adult onset cerebellar ataxia. These data indicate that mutations of nesprin-1 which interacts with lamin A/C may lead to at least two distinct human disease phenotypes, myopathic or neurological, a feature similar to that found in laminopathies.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddp290DOI Listing

Publication Analysis

Top Keywords

syne-1 gene
16
autosomal recessive
12
mutation syne-1
8
responsible autosomal
8
fetal movements
8
intron 136
8
syne-1
5
syne-1 encoding
4
encoding essential
4
essential component
4

Similar Publications

Introduction: Hereditary ataxias (HAs) encompass a diverse and genetically intricate group of rare neurodegenerative disorders, presenting diagnostic challenges. Whole-exome sequencing (WES) has significantly improved diagnostic success. This study aimed to elucidate genetic causes of cerebellar ataxia within a diverse Brazilian cohort.

View Article and Find Full Text PDF

A 24-year-old female presented with wasting and weakness of both hands and fasciculations over the chin since 12 years, followed by imbalance while walking and speech changes since 10 years. Her 12-year-old sister also had a similar clinical presentation. There were fasciculations over the chin, tongue, hands, back, thighs with wasting and weakness in tongue, and C7, C8, T1 segments in both upper limbs along with bipyramidal signs.

View Article and Find Full Text PDF

The testis-specific LINC component SUN3 is essential for sperm head shaping during mouse spermiogenesis.

J Biol Chem

May 2020

First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China

Sperm head shaping is a key event in spermiogenesis and is tightly controlled via the acrosome-manchette network. Linker of nucleoskeleton and cytoskeleton (LINC) complexes consist of Sad1 and UNC84 domain-containing (SUN) and Klarsicht/ANC-1/Syne-1 homology (KASH) domain proteins and form conserved nuclear envelope bridges implicated in transducing mechanical forces from the manchette to sculpt sperm nuclei into a hook-like shape. However, the role of LINC complexes in sperm head shaping is still poorly understood.

View Article and Find Full Text PDF

Nuclear envelope dynamics during mammalian spermatogenesis: new insights on male fertility.

Biol Rev Camb Philos Soc

August 2019

Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal.

The production of highly specialized spermatozoa from undifferentiated spermatogonia is a strictly organized and programmed process requiring extensive restructuring of the entire cell. One of the most remarkable cellular transformations accompanying the various phases of spermatogenesis is the profound remodelling of the nuclear architecture, in which the nuclear envelope (NE) seems to be crucially involved. In recent years, several proteins from the distinct layers forming the NE (i.

View Article and Find Full Text PDF

Nuclear movement is involved in cellular and developmental processes across eukaryotic life, often driven by Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes, which bridge the nuclear envelope (NE) via the interaction of Klarsicht/ANC-1/Syne-1 Homology (KASH) and Sad1/UNC-84 (SUN) proteins. Arabidopsis () LINC complexes are involved in nuclear movement and positioning in several cell types. Observations since the 1950s have described targeted nuclear movement and positioning during symbiosis initiation between legumes and rhizobia, but it has not been established whether these movements are functional or incidental.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!