A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Male-biased effects of gonadotropin-releasing hormone neuron-specific deletion of the phosphoinositide 3-kinase regulatory subunit p85alpha on the reproductive axis. | LitMetric

GnRH neurosecretion is subject to regulation by insulin, IGF-I, leptin, and other neuroendocrine modulators whose effects may be conveyed by activation of phosphoinositide 3-kinase (PI3K)-mediated pathways. It is not known, however, whether any of these regulatory actions are exerted directly, via activation of PI3K in GnRH neurons, or whether they are primarily conveyed via effects on afferent circuitries governing GnRH neurosecretion. To investigate the role of PI3K signaling in GnRH neurons, we used conditional gene targeting to ablate expression of the major PI3K regulatory subunit, p85alpha, in GnRH neurons. Combined in situ hybridization and immunohistochemistry confirmed reduction of p85alpha mRNA expression in GnRH neurons of GnRH-p85alpha knockout (KO) animals. Females of both genotypes exhibited estrous cyclicity and had comparable serum LH, estradiol-17beta, and FSH levels. In male GnRH-p85alphaKO mice, serum LH, testosterone, and sperm counts were significantly reduced compared with wild type. To investigate the role of the other major regulatory subunit, p85beta, on the direct control of GnRH neuronal function, we generated mice with a GnRH-neuron-specific p85alpha deletion on a global betaKO background. No additional reproductive effects in male or female mice were found, suggesting that p85beta does not substitute p85 activity toward PI3K function in GnRH neurons. Our results suggest that p85alpha, and thus PI3K activity, participates in the control of GnRH neuronal activity in male mice. The sex-specific phenotype in these mice raises the possibility that PI3K activation during early development may establish sex differences in GnRH neuronal function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736084PMC
http://dx.doi.org/10.1210/en.2008-1753DOI Listing

Publication Analysis

Top Keywords

gnrh neurons
20
regulatory subunit
12
gnrh neuronal
12
gnrh
10
phosphoinositide 3-kinase
8
subunit p85alpha
8
gnrh neurosecretion
8
investigate role
8
control gnrh
8
neuronal function
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!