The nucleotide NAADP was recently discovered as a second messenger involved in the initiation and propagation of Ca(2+) signaling in lymphoma T cells, but its impact on primary T cell function is still unknown. An optimized, synthetic, small molecule inhibitor of NAADP action, termed BZ194, was designed and synthesized. BZ194 neither interfered with Ca(2+) mobilization by d-myo-inositol 1,4,5-trisphosphate or cyclic ADP-ribose nor with capacitative Ca(2+) entry. BZ194 specifically and effectively blocked NAADP-stimulated [(3)H]ryanodine binding to the purified type 1 ryanodine receptor. Further, in intact T cells, Ca(2+) mobilization evoked by NAADP or by formation of the immunological synapse between primary effector T cells and astrocytes was inhibited by BZ194. Downstream events of Ca(2+) mobilization, such as nuclear translocation of "nuclear factor of activated T cells" (NFAT), T cell receptor-driven interleukin-2 production, and proliferation in antigen-experienced CD4(+) effector T cells, were attenuated by the NAADP antagonist. Taken together, specific inhibition of the NAADP signaling pathway constitutes a way to specifically and effectively modulate T-cell activation and has potential in the therapy of autoimmune diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697110 | PMC |
http://dx.doi.org/10.1073/pnas.0809997106 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!