We have developed a high-performance anion-exchange chromatography with pulsed amperometric detection method for the detection of phenylalanine (Phe) and diagnosis of phenylketonuria (PKU). Sample pretreatment steps were simplified without derivatization. The analyte was separated within 5 min. The detection limit (S/N=3) for Phe was 50 pg. Linear dynamic range was 1.23-14.43 mg/dL (r(2)=0.9999) for a dried blood spot. The mean recoveries of Phe for intra- and inter-day assays were found to be 96.87-104.16%. This method clearly differentiated PKU-positive groups from normal groups, and proved to be a practical procedure for rapid screening and follow-up monitoring of PKU.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2009.06.004 | DOI Listing |
J Food Sci Technol
January 2025
College of Food Science and Technology, Henan University of Technology, Lianhua Road, Zhengzhou, 450001 China.
Spectrophotometer method, ELISA, and High-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) method have been widely used to quantify and characterize the glucose released from rice after in vitro digestion. Despite this, the results of the three methods may not be comparable. This work investigated the limitation of detection (LOD) and quantification (LOQ) of the glucose released after in vitro rice digestion.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030000, China.
A water-soluble polysaccharide from foxtail millet (FM-D1) was isolated and purified through gradient ethanol precipitation and column chromatography. Size-Exclusion Chromatography-Multi-Angle Light Scattering-Refractive Index (SEC-MALLS-RI) and high-performance anion-exchange chromatography (HPAEC) analyses revealed that FM-D1 constitutes a highly purified neutral polysaccharide exclusively composed of glucose as the sugar unit, with a molecular weight of 14.823 kDa.
View Article and Find Full Text PDFFoods
January 2025
Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road, Changqing District, Jinan 250353, China.
Herein, -glucan (BG) was extracted from different colored varieties of highland barley (HB, ), defined as BBG, WBG, and LBG depending on the colors of black, white, and blue and their molecular structure and physicochemical properties were investigated through a series of technical methods. The high-performance anion-exchange chromatography (HPAEC) results indicated the extracted BBG, LBG, and WBG mainly comprised glucose regardless of color. The molecular weight (M) of BBG, LBG, and WBG were 55.
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700, Maisons-Alfort, France.
This study presents the development and validation of a precise analytical method for the speciation analysis of arsenic (As) compounds, including inorganic species [As(III) and As(V)] and organic species such as monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). The method employs anion-exchange high-performance liquid chromatography (AE HPLC) coupled with inductively coupled plasma-mass spectrometry (ICP-MS). To optimize the sample preparation process, microwave-assisted extraction (MAE) and heat-assisted extraction (HAE) techniques were evaluated and compared.
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
Department of Chemistry, Faculty of Science, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2G2, Canada; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3, Canada. Electronic address:
Arsenic speciation in freshwater fish is crucial for providing meaningful consumption guidelines that allow the public to make informed decisions regarding its consumption. While marine fish have attracted much research interest due to their higher arsenic content, research on freshwater fish is limited due to the challenges in quantifying and identifying arsenic species present at trace levels. We describe here a sensitive method and its application to the quantification of arsenic species in freshwater fish.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!