The sorption by chitosan in Cu(II) solutions containing tartrate, glycine (amino acetic acid) and quadrol (N,N,N',N'-tetrakis(2-hydroxypropyl)ethylenediamine) as ligands has been investigated. The degree of sorbate removal strongly depends on pH. In solutions containing tartrate almost complete sorption of both Cu(II) and tartrate proceeds in mildly acidic and neutral solutions. The sorption of Cu(II) is also complete in alkaline solutions containing glycine; meanwhile a substantial sorption of glycine proceeds at pH approximately 6. The Cu(II) sorption in solutions containing quadrol is insignificant. Any sorption of quadrol does not proceed in the whole range of pH investigated. The investigations under equilibrium conditions showed that the Cu(II) sorption from tartrate containing solutions obeys Freundlich equation and in solutions containing glycine and quadrol it fits Langmuir equation. Supposedly, Cu(II) sorption onto chitosan proceeds with formation of amino complexes onto the surface of chitosan; the sorption of tartrate proceeds as electrostatic as well as with formation of amide bonds. Applying of electrolysis enables a complete removal of sorbed Cu(II) and ligands without changes in physical and chemical properties of chitosan. This is confirmed by sorption ability of regenerated chitosan, measurements of its molecular weight, the deacetylation degree and FT-IR spectra.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2009.05.119DOI Listing

Publication Analysis

Top Keywords

sorption cuii
12
cuii sorption
12
sorption
11
tartrate glycine
8
glycine quadrol
8
chitosan sorption
8
sorption chitosan
8
solutions tartrate
8
tartrate proceeds
8
solutions glycine
8

Similar Publications

Selective recovery of Co(II), Mn(II), Cu(II), and Ni(II) by multiple step batch treatments with nanocellulose products.

Environ Sci Pollut Res Int

December 2024

Cellulose, Paper and Advanced Water Treatments Research Group, Department of Chemical Engineering, Complutense University of Madrid, Avda. Complutense S/N, Madrid, Spain.

The recovery of Co(II), Mn(II), Ni(II), and Cu(II) from black mass e-waste solutions through cellulose nanofibers (CNFs) and nanocrystals (CNCs) was investigated. These materials were synthetized by TEMPO-oxidation followed by high-pressure homogenization, and acid hydrolysis, respectively. The NC characterization included the measurement of consistency, cationic demand, carboxylic content, dissolved amorphous cellulose, and transmittance at λ = 600 nm.

View Article and Find Full Text PDF

Sorption of metal ions onto PET-derived microplastic fibres.

Environ Sci Process Impacts

December 2024

School of Chemistry and Chemical Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK.

Article Synopsis
  • This study explored how microplastic polyester fibers, specifically polyethylene terephthalate (PET), can absorb various metal ions found in sewage.
  • The research found that PET fibers could effectively retain metal ions like lead, cadmium, and mercury, with lead showing the highest absorption capacity.
  • The findings suggest that when these microplastics are present in sewage treatment, they can contribute to the transfer of hazardous metals into the environment, particularly when sewage sludge is used on agricultural land.
View Article and Find Full Text PDF

Effective removal of organic and inorganic impurities by adsorption technique requires the preparation of new materials characterized by low production costs, significant sorption capacity, and reduced toxicity, derived from natural and renewable sources. To address these challenges, new adsorbents have been developed in the form of polymer microspheres based on ethylene glycol dimethacrylate (EGDMA) and vinyl acetate (VA) (EGDMA/VA) containing starch (St) modified with boric acid (B) and dodecyl-S-thiuronium dodecylthioacetate (DiTDTA) for the removal of dyes: C.I.

View Article and Find Full Text PDF

Heavy-Metal Ions Control on PFAS Adsorption on Goethite in Aquatic Systems.

Environ Sci Technol

November 2024

Ecole Nationale Supérieure de Chimie de Rennes, ISCR-UMR 6226, Université de Rennes, CNRS, F-35000 Rennes, France.

Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants that often co-occur with heavy metals. Despite their prevalence, the mobility of PFAS in complex, multicomponent systems, particularly at the molecular scale, remains poorly understood. The vast diversity of PFAS and their low concentrations alongside anthropogenic and natural substances underscore the need for integrating mechanistic insights into the sorption models.

View Article and Find Full Text PDF

In this study, four types of "Juá" stem barks (Ziziphus joazeiro) were investigated for the removal of Cu(II) from aqueous solutions. The tested samples included natural coarse barks, and barks washed with water, ethanol-water, and NaOH solutions. The solvent-modified materials simulated the waste of the industrial extraction of saponins from bark.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!