Phospholipase A(2) (PLA(2)) is one of the main components of bee venom. Here, we identify a venom PLA(2) from the bumblebee, Bombus ignitus. Bumblebee venom PLA(2) (Bi-PLA(2)) cDNA, which was identified by searching B. ignitus venom gland expressed sequence tags, encodes a 180 amino acid protein. Comparison of the genomic sequence with the cDNA sequence revealed the presence of four exons and three introns in the Bi-PLA(2) gene. Bi-PLA(2) is an 18-kDa glycoprotein. It is expressed in the venom gland, cleaved between the residues Arg44 and Ile45, and then stored in the venom sac. Comparative analysis revealed that the mature Bi-PLA(2) (136 amino acids) possesses features consistent with other bee PLA(2)s, including ten conserved cysteine residues, as well as a highly conserved Ca(2+)-binding site and active site. Phylogenetic analysis of bee PLA(2)s separated the bumblebee and honeybee PLA(2) proteins into two groups. The mature Bi-PLA(2) purified from the venom of B. ignitus worker bees hydrolyzed DBPC, a known substrate of PLA(2). Immunofluorescence staining of Bi-PLA(2)-treated insect Sf9 cells revealed that Bi-PLA(2) binds at the cell membrane and induces apoptotic cell death.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpb.2009.06.003 | DOI Listing |
Ann Allergy Asthma Immunol
January 2025
Center for Drug Safety and Immunology, Vanderbilt University Medical Centre, Nashville, Tennessee, USA; Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia.
Background: Donor acquired allergy (DAA) occurs when donors transfer their allergies to recipients through solid organ transplant (SOT). However, the risk of DAA in recipients of organs from allergic donors has not been systematically characterized.
Objective: We sought to synthesize the available evidence on the risk of DAA in SOT recipients.
Toxicon
January 2025
Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway, Km 12 - Unit II, University City, 79804-970, Dourados, MS, Brazil; Faculty of Exact Sciences and Technology, Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway, Km 12 - Unit II, University City, 79804-970, Dourados, MS, Brazil.
The venom of Ectatomma brunneum is considered promising for drugs development. Therefore, it is important to evaluate its toxic potential and genetic instability using biological assays. To this end, toxicity assays were performed with Artemia salina, cytotoxicity and genotoxicity with Allium cepa and mutagenicity with Ames.
View Article and Find Full Text PDFToxicon
January 2025
Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080 Marrakech, Morocco.
Scorpion venom research aims to develop treatments for dangerous species and identify candidates for new drugs. The extraction of high-quality venom, which is essential, requires mastery of the extraction and maintenance of scorpions. It is in this perspective that we have undertaken this present work which aims to contribute to scientifically mastering venom yields and the factors that influence them in scorpions.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo (UNOESTE), Presidente Prudente 19050-680, SP, Brazil.
We compared the enzymatic, coagulant, and neuromuscular activities of two variants (yellow-CDRy and white-CDRw) of venom with a sample of (CDT) venom and examined their neutralization by antivenom against CDT venom. The venoms were screened for enzymatic and coagulant activities using standard assays, and electrophoretic profiles were compared by SDS-PAGE. Neutralization was assessed by preincubating venoms with crotalic antivenom and assaying the residual activity.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Animal Science, Shanxi Agricultural University, Taigu 030801, China.
Bee venom (BV) and its main compound melittin (MLT) have antioxidant, anti-inflammatory, and anti-aging activities; however, very little research has been conducted on their effects on skin aging. In this study, a mouse skin aging model induced by D-galactose was constructed via subcutaneous injection into the scruff of the neck, and different doses of BV and MLT were used as interventions. The anti-aging effects and mechanisms of BV and MLT were explored by detecting the skin morphology and structure, and anti-aging-related factors and performing non-targeted metabolomics of mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!