In silico analysis of the effects of H2 and CO2 on the metabolism of a capnophilic bacterium Mannheimia succiniciproducens.

J Biotechnol

Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea.

Published: November 2009

This study presents an in-depth study on the physiological behavior of Mannheimia succiniciproducens, a capnophilic bacterium and an efficient succinic acid producer, under varying gas conditions as H(2) and CO(2) play important roles in the production of succinic acid. Constraints-based flux analysis of the genome-scale metabolic model of M. succiniciproducens was performed to estimate the production patterns of several organic acids in response to varying H(2), CO(2), and glucose uptake rates. Results from controlled cultivations performed previously and constraints-based flux analyses of M. succiniciproducens in this study revealed that there is an optimal range of CO(2) level in the medium for enhancing cell growth and succinic acid production at a given glucose uptake rate. Furthermore, the uptake rates of H(2) and CO(2) from the medium have a direct relationship with each other, significantly influencing the rates of cell growth and succinic acid production. Predictions made in this study quantitatively describe the physiological changes of the cell in response to varying H(2), CO(2), and glucose uptake rates, which consequently allow us to identify the feasible physiological states of the cell with respect to cell growth rate and succinic acid production rate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2009.06.003DOI Listing

Publication Analysis

Top Keywords

succinic acid
20
glucose uptake
12
uptake rates
12
cell growth
12
acid production
12
capnophilic bacterium
8
mannheimia succiniciproducens
8
succiniciproducens study
8
constraints-based flux
8
response varying
8

Similar Publications

Metformin is the first-line pharmacotherapy for type 2 diabetes mellitus; however, many patients respond poorly to this drug in clinical practice. The potential involvement of microbiota-mediated intestinal immunity and related signals in metformin responsiveness has not been previously investigated. In this study, we successfully constructed a humanized mouse model by fecal transplantation of the gut microbiota from clinical metformin-treated - responders and non-responders, and reproduced the difference in clinical phenotypes of responsiveness to metformin.

View Article and Find Full Text PDF

Poly(lactic) (PLA) is a biodegradable material obtained from renewable resources and is recognized as a safe biopolymer by the Food and Drug Administration. PLA expresses excellent mechanical and moldability attributes nonetheless poor elasticity/functionality limits its widespread utilization. One approach to compensate for this is chemical surface modification through free radical grafting with small organic molecules like maleic anhydride (MA).

View Article and Find Full Text PDF

Intermetallic RNiSi (R = Ca, La, and Y) Catalysts with Electron-Rich Ni Sites for Continuous Flow Selective Hydrogenation of Maleic Anhydride.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

The industrial advancement of downstream products resulting from the directed hydrogenation of maleic anhydride is hindered by the limitations related to the activity and stability of catalysts. The development of nonprecious metal intermetallic compounds, in which active sites are adjustable in the local structures and electronic properties embedded within a distinct framework, holds immense potential in enhancing catalytic efficacy and stability. Herein, we report that nickel-based silicides catalysts, RNiSi (R = Ca, La, and Y), afford high efficiency in the selective hydrogenation of maleic anhydride.

View Article and Find Full Text PDF

Drug Property Optimization: Design, Synthesis, and Characterization of Novel Pharmaceutical Salts and Cocrystal-Salt of Lumefantrine.

Mol Pharm

January 2025

Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.

Lumefantrine (LMF) is a low-solubility antimalarial drug that cures acute, uncomplicated malaria. It exerts its pharmacological effects against erythrocytic stages of spp. and prevents malaria pathogens from producing nucleic acid and protein, thereby eliminating the parasites.

View Article and Find Full Text PDF

Bioelectrochemical systems (BESs) offer a sustainable method for chemical production, including the enhanced production of succinic acid. By combining fermentation with BES, it could be possible to achieve sustainable succinic acid production and CO fixation using . In literature, the potential application of BES is commonly associated with increased succinate yields, as it is expected to enhance the availability of NADH, thereby influencing the intracellular nicotinamide adenine dinucleotide (NADH/NAD) balance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!