Glucose intolerance in C57Bl/6 mice has been associated with mutations in the nicotinamide nucleotide transhydrogenase (Nnt) gene. It has been proposed that the absence of NNT from mitochondria leads to increased mitochondrial reactive oxygen species production and subsequent activation of uncoupling protein 2 (UCP2). Activation of UCP2 has been suggested to uncouple electron transport from ATP synthesis in pancreatic beta cell mitochondria thereby decreasing glucose tolerance due to decreased insulin secretion through lower ATP/ADP ratios. The hypothesis tested in this paper is that UCP2 function is required for the dysregulation of glucose homeostasis observed in NNT ablated mice. Single and double Nnt and Ucp2 knockout mouse lines were used to measure glucose tolerance, whole animal energy balance and biochemical characteristics of mitochondrial uncoupling. As expected, glucose tolerance was diminished in mice lacking NNT. This was independent of UCP2 as it was observed either in the presence or absence of UCP2. The range of metabolic parameters examined in the mice and the proton conductance of isolated mitochondria remained unaltered in this double NNT and UCP2 knockout model. Ablation of UCP2 did not itself affect glucose tolerance and therefore previous observations of increased glucose tolerance of mice lacking UCP2 were not confirmed. We conclude that the decreased glucose tolerance in Nnt knockout mice observed in our experiments does not require UCP2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2741566PMC
http://dx.doi.org/10.1016/j.bbabio.2009.06.005DOI Listing

Publication Analysis

Top Keywords

glucose tolerance
24
ucp2
10
dysregulation glucose
8
glucose homeostasis
8
nicotinamide nucleotide
8
nucleotide transhydrogenase
8
knockout mice
8
uncoupling protein
8
glucose
8
double nnt
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!