The activation of G-protein-coupled receptors (GPCRs) can result in the stimulation of numerous signaling networks that extend beyond canonical secondary messenger-dependent pathways. It is well-established that many of these diverse networks converge on the MAPK pathway, resulting in the activation of extracellular-signal regulated kinase 1/2 (ERK). Since the link between GPCRs and ERK can be modulated via both G-protein-dependent and -independent mechanisms, measurement of ERK phosphorylation may serve as an ideal surrogate for GPCR activation. We have combined BacMam-mediated gene delivery of the GFP-ERK2 with a time-resolved Foerster resonance energy transfer (TR-FRET) immunoassay for the measurement of intracellular phospho-ERK2 levels. Together these technologies enable a flexible platform for measuring GPCR and MAPK activation in the cell line of interest. This technology has been applied to the measurement of activation of the serotonin 5-hydroxytryptamine-1A (5-HT(1A)) receptor expressed in CHO-K1 cells. In addition to demonstrating the flexibility of this assay platform, we provide the first reported profile for 5-HT(1A) receptor-mediated ERK activation using a panel of known Parkinson's disease drugs. Our results demonstrate the value of using ERK activation as a downstream sensor for GPCR function, providing an attractive complement to upstream endpoints such as ligand occupancy and binding of GTPgammaS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2009.06.018 | DOI Listing |
Biomedicines
May 2024
Department of Pharmacology, Showa University Graduate School of Medicine, Tokyo 142-8555, Japan.
Amyloid β-peptide (Aβ) synthesis and deposition are the primary factors underlying the pathophysiology of Alzheimer's disease (AD). Aβ oligomer (Aβo) exerts its neurotoxic effects by inducing oxidative stress and lesions by adhering to cellular membranes. Though several antidepressants have been investigated as neuroprotective agents in AD, a detailed comparison of their neuroprotection against Aβo-induced neurotoxicity is lacking.
View Article and Find Full Text PDFEnviron Sci Technol
April 2024
Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
Arch Razi Inst
October 2023
Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh.
Since depression is a common mental illness affecting an estimated 5% of people worldwide, investigators are encouraged to develop effective antidepressants. According to the monoamine-deficiency hypothesis, the underlying pathophysiology of depression is a deficiency of some neurotransmitters (serotonin, norepinephrine, or dopamine) in the central nervous system. The neurotransmitter serotonin has drawn the most attention concerning depression.
View Article and Find Full Text PDFBrain Commun
February 2024
Department of Psychiatry, University of Oxford, Oxford, UK.
Psilocybin therapy for depression has started to show promise, yet the underlying causal mechanisms are not currently known. Here, we leveraged the differential outcome in responders and non-responders to psilocybin (10 and 25 mg, 7 days apart) therapy for depression-to gain new insights into regions and networks implicated in the restoration of healthy brain dynamics. We used large-scale brain modelling to fit the spatiotemporal brain dynamics at rest in both responders and non-responders before treatment.
View Article and Find Full Text PDFJ Chromatogr A
March 2024
College of Life Sciences, Northwest University, Xi'an 710069, China. Electronic address:
G protein-coupled receptors (GPCRs) are one of the most prominent targets for drug discovery. Immobilizing GPCRs has proven to be an effective strategy for expanding the utility of GPCRs into nonbiological contexts. However, traditional strategies of immobilizing GPCRs have been severely challenged due to the loss of receptor function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!