Vitamin D receptor (VDR) is a member of the nuclear receptor superfamily and regulates transcription of target genes. In this study, we identified CDK11(p58) as a novel protein involved in the regulation of VDR. CDK11(p58), a member of the large family of p34cdc2-related kinases, is associated with cell cycle progression, tumorigenesis, and apoptotic signaling. Our study demonstrated that CDK11(p58) interacted with VDR and repressed VDR-dependent transcriptional activation. Furthermore, overexpression of CDK11(p58) decreased the stability of VDR through promoting its ubiquitin-proteasome-mediated degradation. Taken together, these results suggest that CDK11(p58) is involved in the negative regulation of VDR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2009.06.061DOI Listing

Publication Analysis

Top Keywords

transcriptional activation
8
regulation vdr
8
cdk11p58
6
vdr
5
cdk11p58 represses
4
represses vitamin
4
vitamin receptor-mediated
4
receptor-mediated transcriptional
4
activation promoting
4
promoting ubiquitin-proteasome
4

Similar Publications

Transient chemical-mediated epigenetic modulation confers unrestricted lineage potential on human primed pluripotent stem cells.

Sci China Life Sci

January 2025

Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, 100191, China.

Human primed pluripotent stem cells are capable of generating all the embryonic lineages. However, their extraembryonic trophectoderm potentials are limited. It remains unclear how to expand their developmental potential to trophectoderm lineages.

View Article and Find Full Text PDF

Mediator25 (MED25) has been ascribed as a signal-processing and -integrating center that controls jasmonate (JA)-induced and MYC2-dependent transcriptional output. A better understanding of the regulation of MED25 stability will undoubtedly advance our knowledge of the precise regulation of JA signaling-related transcriptional output. Here, we report that Arabidopsis MED16 activates JA-responsive gene expression by promoting MED25 stability.

View Article and Find Full Text PDF

Neutrophils were historically considered a homogenous population of cells with functions limited to innate immunity against external threats. However, with the rise of immunotherapy, recent works have shown that neutrophils are also important actors in immuno-oncology. In this context, neutrophils appear as a more heterogenous population of cells.

View Article and Find Full Text PDF

Fructose-Driven glycolysis supports synaptic function in subterranean rodent - Gansu Zokor (Eospalax cansus).

Neuroscience

January 2025

Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, China; College of Life Science, Shaanxi Normal University, Xi'an, China. Electronic address:

Several studies indicate that fructose can be used as an energy source for subterranean rodents. However, how subterranean rodents utilize fructose metabolism with no apparent physiological drawbacks remains poorly understood. In the present study, we measured field excitatory postsynaptic potentials (fEPSPs) in hippocampal slices from Gansu zokor and SD rats hippocampi before and 60 min after replacement of 10 mM glucose in the artificial cerebrospinal fluid (ACSF) with 10 mM fructose (gassed with 95 % O and 5 % CO).

View Article and Find Full Text PDF

Cortical spreading depolarization (CSD), the neurophysiological event believed to underlie aura, may trigger migraine headaches through inflammatory signaling that originates in neurons and spreads to the meninges via astrocytes. Increasing evidence from studies on rodents and migraine patients supports this hypothesis. The transition from pro-inflammatory to anti-inflammatory mechanisms is crucial for resolving inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!