AI Article Synopsis

  • The study investigates the use of human fallopian tubes (hFTs) as a new source of multipotent stem cells, known as human tube MSCs (htMSCs), which can be obtained from discarded tissues.
  • Methods used in the research included expanding hFTs, analyzing their karyotype, characterizing them through flow cytometry, and testing their ability to differentiate into various cell types like fat, cartilage, bone, and muscle.
  • Results indicate that htMSCs can be easily isolated and expanded, showing potential for regenerative medicine due to their ability to differentiate into multiple cell lineages.

Article Abstract

Background: The possibility of using stem cells for regenerative medicine has opened a new field of investigation. The search for sources to obtain multipotent stem cells from discarded tissues or through non-invasive procedures is of great interest. It has been shown that mesenchymal stem cells (MSCs) obtained from umbilical cords, dental pulp and adipose tissue, which are all biological discards, are able to differentiate into muscle, fat, bone and cartilage cell lineages. The aim of this study was to isolate, expand, characterize and assess the differentiation potential of MSCs from human fallopian tubes (hFTs).

Methods: Lineages of hFTs were expanded, had their karyotype analyzed, were characterized by flow cytometry and underwent in vitro adipogenic, chondrogenic, osteogenic, and myogenic differentiation.

Results: Here we show for the first time that hFTs, which are discarded after some gynecological procedures, are a rich additional source of MSCs, which we designated as human tube MSCs (htMSCs).

Conclusion: Human tube MSCs can be easily isolated, expanded in vitro, present a mesenchymal profile and are able to differentiate into muscle, fat, cartilage and bone in vitro.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714040PMC
http://dx.doi.org/10.1186/1479-5876-7-46DOI Listing

Publication Analysis

Top Keywords

stem cells
16
human fallopian
8
mesenchymal stem
8
cells discarded
8
differentiate muscle
8
muscle fat
8
human tube
8
tube mscs
8
mscs
5
human
4

Similar Publications

NAC-Grafted ROS-Scavenging Polymer Nanoparticles for Modulation of Acute Lung Injury Microenvironment In Vivo.

Biomacromolecules

December 2024

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.

-Acetyl cysteine (NAC) is an essential molecule that boosts acute lung injury (ALI) defense via its direct antioxidant capability. Nevertheless, the therapeutic use of NAC is limited due to its poor bioavailability and short half-life. In this study, NAC was grafted to the polyurethane consisting of poly(propylene fumarate), poly(thioketal), and 1,6-hexamethylene diisocyanate (PFTU) to reduce excessive oxidative stress and inflammatory factors in ALI.

View Article and Find Full Text PDF

Retinal pigment epithelium (RPE) atrophy is a significant cause of human blindness worldwide, occurring in polygenic diseases such as age-related macular degeneration (AMD) and monogenic diseases such as Stargardt diseases (STGD1) and late-onset retinal degeneration (L-ORD). The patient-induced pluripotent stem cells (iPSCs)-derived RPE (iRPE) model exhibits many advantages in understanding the cellular basis of pathological mechanisms of RPE atrophy. The iRPE model is based on iPSC-derived functionally mature and polarized RPE cells that reproduce several features of native RPE cells, such as phagocytosis of photoreceptor outer segments (POS) and replenishment of visual pigment.

View Article and Find Full Text PDF

In vivo bioengineered tooth formation using decellularized tooth bud extracellular matrix scaffolds.

Stem Cells Transl Med

December 2024

Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, United States.

The use of dental implants to replace lost or damaged teeth has become increasingly widespread due to their reported high survival and success rates. In reality, the long-term survival of dental implants remains a health concern, based on their short-term predicted survival of ~15 years, significant potential for jawbone resorption, and risk of peri-implantitis. The ability to create functional bioengineered teeth, composed of living tissues with properties similar to those of natural teeth, would be a significant improvement over currently used synthetic titanium implants.

View Article and Find Full Text PDF

Tissue engineering and cartilage transplantation constitute an evolving field in the treatment of osteoarthritis, with therapeutic and clinical promise shown in autologous chondrocyte implantation. The aim of this systematic review is to explore current clinical trials that utilized autologous chondrocyte transplantation (ACT) and assess its efficacy in the treatment of osteoarthritis. PubMed, Ovid MEDLINE, and Google-Scholar (pages 1-20) were searched up until February 2023.

View Article and Find Full Text PDF

Signaling pathway regulators in preimplantation embryos.

J Mol Histol

December 2024

Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O.Box 16635-148, Tehran, Iran.

Embryonic development during the preimplantation stages is highly sensitive and critically dependent on the reception of signaling cues. The precise coordination of diverse pathways and signaling factors is essential for successful embryonic progression. Even minor disruptions in these factors can result in physiological dysfunction, fetal malformations, or embryonic arrest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!