Although the peroxisome proliferator-activated receptor (PPAR) delta has been implicated in the wound healing process, its exact role and mechanism of action have not been fully elucidated. Our previous findings showed that PPARdelta induces the expression of the transforming growth factor (TGF)-beta1, which has been implicated in the deposit of extracellular matrix proteins. Here, we demonstrate that administration of GW501516, a specific PPARdelta ligand, significantly promoted wound closure in the experimental mouse and had a profound effect on the expression of collagen types I and III, alpha-smooth muscle actin, pSmad3 and TGF-beta1, which play a pivotal role in wound healing processes. Activation of PPARdelta increased migration of human epidermal keratinocytes and dermal fibroblasts in in vitro scrape-wounding assays. Addition of a specific ALK5 receptor inhibitor SB431542 significantly suppressed GW501516-induced migration of human keratinocytes and fibroblasts. In these cells, activated PPARdelta also induced the expression of collagen types I and III and fibronectin in a TGF-beta1-dependent or -independent manner. The effect of PPARdelta on the expression of type III collagen was dually regulated by the direct binding of PPARdelta and Smad3 to a direct repeat-1 site and a Smad-binding element, respectively, of the type III gene promoter. Taken together, these results demonstrated that PPARdelta plays an important role in skin wound healing in vivo and that it functions by accelerating extracellular matrix-mediated cellular interactions in a process mediated by the TGF-beta1/Smad3 signaling-dependent or - independent pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3829036 | PMC |
http://dx.doi.org/10.1111/j.1582-4934.2009.00816.x | DOI Listing |
J Immunol
January 2025
Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada.
Macrophages are important mediators of immune responses with critical roles in the recognition and clearance of pathogens, as well as in the resolution of inflammation and wound healing. The neuronal guidance cue SLIT2 has been widely studied for its effects on immune cell functions, most notably directional cell migration. Recently, SLIT2 has been shown to directly enhance bacterial killing by macrophages, but the effects of SLIT2 on inflammatory activation of macrophages are less known.
View Article and Find Full Text PDFJ Immunol
January 2025
Department of Biological Sciences, California State University San Marcos, San Marcos, CA, United States.
Obesity is associated with comorbidities including type 2 diabetes, chronic nonhealing wounds, and psoriasis. Normally, skin homeostasis and repair is regulated through the production of cytokines and growth factors derived from skin-resident cells including epidermal γδ T cells. However, epidermal γδ T cells exhibit reduced proliferation and defective growth factor and cytokine production during obesity and type 2 diabetes.
View Article and Find Full Text PDFPLoS One
March 2025
Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
Periprosthetic joint infections (PJI), along with the extensive medical and surgical interventions required for treatment, impose a substantial psychological burden on patients. Given the need for patients to adapt to long-term physical limitations and ongoing medical challenges, this qualitative study aims to explore the nature of psychological coping amongst patients with chronic cases of PJI. A total of 18 patients (8 men and 10 women, aged 55 to 92) who underwent a total knee or hip arthroplasty revision due to chronic PJI were recruited at a single academic institution between August 2022 and July 2023.
View Article and Find Full Text PDFPLoS One
March 2025
Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China.
Diabetic wounds have a profound effect on both the physical and psychological health of patients, highlighting the urgent necessity for novel treatment strategies and materials. Macrophages are vital contributors to tissue repair mechanisms. Macrophage conditioned medium contains various proteins and cytokines related to wound healing, indicating its potential to improve recovery from diabetic wound.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!