Targeted drug delivery for treatment and imaging of glioblastoma multiforme.

Expert Opin Drug Deliv

Arizona State University, Center for Interventional Biomaterials, Harrington Department of Bioengineering, Tempe, AZ 85287, USA.

Published: July 2009

Glioblastoma multiforme is a grade IV astrocytic tumor with a very high mortality rate. Although current treatment often includes surgical resection, this rarely removes all primary tumor cells, so is usually followed by radiation and/or chemotherapy. Remaining migratory tumor cells invade surrounding healthy tissue and contribute to secondary and tertiary tumor recurrence; therefore, despite significant research into glioma removal and treatment, prognosis remains poor. A variety of treatment modalities have been investigated to deliver drug to these cells, including systemic, diffusive and convection-enhanced delivery (CED). As systemic delivery is limited by molecules larger than approximately 500 Da being unable to cross the blood-brain barrier (BBB), therapeutic concentrations are difficult to attain; thus, localized delivery options relying on diffusion and CED have been used to circumvent the BBB. Although CED enables delivery to a greater volume of tissue than diffusive delivery alone, limitations still exist, requiring that these delivery strategies be improved. This review enumerates the strengths and weaknesses of these currently used strategies and details how predictive mathematical modeling can be used to aid investigators in optimizing these delivery modalities for clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1517/17425240902988470DOI Listing

Publication Analysis

Top Keywords

delivery
8
glioblastoma multiforme
8
tumor cells
8
targeted drug
4
drug delivery
4
treatment
4
delivery treatment
4
treatment imaging
4
imaging glioblastoma
4
multiforme glioblastoma
4

Similar Publications

Aim: To investigate additional factors contributing to the pathophysiology of chemotherapy-induced oral mucositis and periodontitis beyond the systemic immune suppression caused by the chemotherapeutic agent 5-Fluorouracil (5-FU).

Methods: 5-Fluorouracil was topically delivered to the non-keratinized, rapidly proliferating junctional epithelium (JE) surrounding the dentition, and acts as an immunologic and functional barrier to bacterial ingression. Various techniques, including EdU incorporation, quantitative immunohistochemistry (qIHC), histology, enzymatic activity assays, and micro-computed tomographic (μCT) imaging, were employed to analyze the JE at multiple time points following topical 5-FU treatment.

View Article and Find Full Text PDF

Ornithine transcarbamylase deficiency (OTCD) is the most common urea cycle disorder, characterized by hyperammonemia and accompanied by a high unmet patient need. mRNA therapies have been shown to be efficacious in hypomorphic Sparse-fur abnormal skin and hair (Spf-ash) mice, a model of late-onset disease. However, studying the efficacy of ornithine transcarbamylase (OTC) mRNA therapy in traditional knockout mice, a model for severe early-onset OTCD, is hampered by the rapid lethality of the model, and poor lipid nanoparticle (LNP) uptake into neonatal mouse liver.

View Article and Find Full Text PDF

Efficient Gene Delivery Admitted by small Metabolites Specifically Targeting Astrocytes in the Mouse Brain.

Mol Ther

January 2025

School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Chinese Institute for Brain Research, Beijing 102206, China. Electronic address:

The development of efficient and targeted methods for delivering DNA in vivo has long been a major focus of research. In this study, we introduce a gene Delivery approach Admitted by small Metabolites, named gDAM, for the efficient and targeted delivery of naked DNA into astrocytes in the adult brains of mice. gDAM utilizes a straightforward combination of DNA and small metabolites, including glycine, L-proline, L-serine, L-histidine, D-alanine, Gly-Gly, and Gly-Gly-Gly, to achieve astrocyte-specific delivery of naked DNA, resulting in transient and robust gene expression in these cells.

View Article and Find Full Text PDF

Background: Mental health disorders are one of the leading causes of illness globally. The importance of psychosocial skills acquired in early childhood, such as executive functions, inhibitory control, emotional regulation, and social problem-solving, in preventing mental disorders has been reported. Furthermore, mental health care delivery is evolving, and mobile technology is becoming the medium for assessment and intervention.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic is a global crisis, and health systems worldwide have faced numerous challenges in containing it. This study aimed to identify the challenges faced by the Iranian health system in controlling the COVID-19 pandemic.

Methods: A conventional content analysis approach was employed in this qualitative study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!