Development of an alternative source of functional, transplantable beta-cells to replace or supplement cadaveric tissue is critical to the future success of islet cell transplantation therapy. Embryonic pancreatic precursor cells are desirable as a renewable source of beta-cells as they are both proliferative and inherently capable of pancreatic cell differentiation. We have previously shown that precursor cells undergo selective beta-cell differentiation when dissociated and photoencapsulated in a polyethylene glycol (PEG) hydrogel network; however, these cells remained immature and were not glucose responsive. Collagen type 1 supports mature cell viability and function in many cell types and we hypothesized that incorporating it within our gels may support differentiating beta-cells and facilitate beta-cell maturation. For these studies, collagen-1 was entrapped with dissociated pancreatic precursor cells in a PEG hydrogel matrix (PEGCol) with the following key findings: (1) mature, glucose-responsive, islet-like structures differentiated from spontaneously forming precursor cell clusters in PEGCol, but not unmodified PEG, hydrogels; (2) a balance existed between providing sufficient collagen-1 signaling to support precursor cell development and providing an overabundance of adhesive sites allowing contaminating mesenchymal cells to thrive' and (3) mechanical stability provided by the PEG hydrogel platform is important for successful precursor cell culture, as PEGCol hydrogels encourage glucose responsiveness and high-insulin gene expression, while pure collagen gel cultures, with the same collagen concentration, have negligible insulin gene expression. These results indicate that PEGCol hydrogels are a useful culture platform to promote differentiation of a glucose-responsive beta-cell population from dissociated precursor cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2792077 | PMC |
http://dx.doi.org/10.1089/ten.tea.2009.0148 | DOI Listing |
J Vis Exp
January 2025
Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School;
A method to quantitate the stabilization of Mitochondria-Associated endoplasmic reticulum Membranes (MAMs) in a 3-dimensional (3D) neural model of Alzheimer's disease (AD) is presented here. To begin, fresh human neuro progenitor ReN cells expressing β-amyloid precursor protein (APP) containing familial Alzheimer's disease (FAD) or naïve ReN cells are grown in thin (1:100) Matrigel-coated tissue culture plates. After the cells reach confluency, these are electroporated with expression plasmids encoding red fluorescence protein (RFP)-conjugated mitochondria-binding sequence of AKAP1(34-63) (Mito-RFP) that detects mitochondria or constitutive MAM stabilizers MAM 1X or MAM 9X that stabilize tight (6 nm ± 1 nm gap width) or loose (24 nm ± 3 nm gap width) MAMs, respectively.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China.
Objectives: Mesothelin (MSLN) is an antigen that is overexpressed in various cancers, and its interaction with tumor-associated cancer antigen 125 plays a multifaceted role in tumor metastasis. The serum MSLN expression level can be detected using enzyme-linked immunosorbent assay; however, non-invasive visualization of its expression at the tumor site is currently lacking. Therefore, the aim of this study was to develop a molecular probe for imaging MSLN expression through positron emission tomography (PET).
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.
The 55-carbon isoprenoid, undecaprenyl-phosphate (UndP), is a universal carrier lipid that ferries most glycans and glycopolymers across the cytoplasmic membrane in bacteria. In addition to peptidoglycan precursors, UndP transports O-antigen, capsule, wall teichoic acids, and sugar modifications. How this shared but limited lipid is distributed among competing pathways is just beginning to be elucidated.
View Article and Find Full Text PDFJ Cell Mol Med
February 2025
Department of Neurobiology, Key Laboratory of Molecular Neurobiology of the Ministry of Education, Naval Medical University, Shanghai, China.
Myelin is the key structure for high-speed information transmission and is formed by oligodendrocytes (OLs) which are differentiated from oligodendrocyte precursor cells (OPCs) in the central nervous system. Lipid is the main component of myelin and the role of lipid metabolism-related molecules in myelination attach increasing attention. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) mediates the conversion of lysophosphatidylcholine (LPC) to phosphatidylcholine (PC), and its role in myelination draws our interest as LPC is a classical demyelination inducer and PC is a major component of myelin.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong.
Introduction: Antisense oligonucleotides (ASOs) have shown promise in reducing amyloid precursor protein (APP) levels in neurons, but their effects in astrocytes, key contributors to neurodegenerative diseases, remain unclear. This study evaluates the efficacy of APP ASOs in astrocytes derived from an individual with Down syndrome (DS), a population at high risk for Alzheimer's disease (AD).
Methods: Human induced pluripotent stem cells (hiPSCs) from a healthy individual and an individual with DS were differentiated into astrocytes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!